Controller Synthesis for Application Specific Integrated Circuits

Rumi Zahir

Hartung-Gorre Verlag, Konstanz, Germany 1991

Contents

1	Introduction					
	1.1	Problem Formulation	3			
	1.2	Conceptual Outline	8			
		1.2.1 Basic Block Scheduling	8			
		1.2.2 Controller Synthesis in Presence of Conditional Branches and Loops	10			
	1.3	Organization of the Dissertation	12			
2	Behavioral Specification 1					
	2.1	Requirements for a Behavioral Specification for Controller				
		Synthesis	13			
	2.2	Related Specification Work	15			
		2.2.1 Petri Nets	15			
		2.2.2 Hardware Description Languages	16			
		2.2.3 Microcode Compaction	18			
		2.2.4 Timing Constraints	20			
	2.3	Explicit Specification	22			
I	Bas	sic Block Scheduling	25			
3	The	Timing Constraint Graph	27			
	3.1	Timing Constraint Graph Model	29			
	3.2	Constraint Specification	29			
		3.2.1 Physical Unit Timing Constraints	29			

		3.2.2 Topological Constraints	34
		3.2.3 Algorithm Constraints	37
		3.2.4 Resource Constraints	38
		3.2.5 User Constraints	41
	3.3	Constraint Graph Assembly	42
		3.3.1 Outline	42
		3.3.2 A Simple Timing Constraint Graph	43
		3.3.3 Assembly Algorithm	45
	3.4	Summary	49
4	Sche	eduling the Timing Constraint Graph	51
	4.1	Review of Scheduling Algorithms	51
		4.1.1 Classical Scheduling Problems	51
		4.1.2 Scheduling in Digital Circuit Synthesis	52
		4.1.3 Scheduling for Controller Synthesis	55
	4.2	The Constraint Graph and The Longest Path Problem	57
	4.3	Longest Path Problem in a Directed Acyclic Graph	62
	4.4	Iterative Longest Path Problem in a Directed Cyclic Graph .	66
	4.5	Scheduling Relative to Clock Edges	70
	4.6	Results	74
		4.6.1 The Simple Basic Block	74
		4.6.2 The Video Coder	78
	4.7	Summary	82
		•	
тт	C	ontroller Synthesis in Presence of Conditional	
B	ranc	hes and Loops	85
5	Sche	eduling Across Basic Block Boundaries	87
-	5.1	Related Scheduling Schemes	89
	5.2	Outline of Overlap Scheduling	91
	5.3	Global Data Flow Graph Assembly	94
	0.0	5.3.1 Control Flow	95
		5.3.2 Data Flow	95
		5.3.3 Resource Dependencies	96
	5.4	Basic Block Profiles	97
	5.5	Overlapping Basic Blocks	98
	5.6	Overlan Scheduling	100
	5.7	Path Schedule for a Loop in the Control Flow Graph	03
	5.8	The Modified Video Coder	06
	2.0		

Contents

	5.9	Summary	119		
6	Microcode Generation				
	6.1	Software Pipelining	122		
	6.2	Controller Architectures	126		
		6.2.1 Register Transfer Structures for Controllers	126		
		6.2.2 Controller Architectures in High-Level Synthesis	131		
		6.2.3 Hierarchical Controller Architecture	131		
	6.3	Basic Block Finite State Machines	135		
		6.3.1 FSMs for Pipelined Loops	135		
		6.3.2 Branching Trees	138		
		6.3.3 Basic Blocks with Multiple Invocation Periods	140		
		6.3.4 Basic Block Controllers for the Modified Video Coder	142		
	6.4	The Control Finite State Machine	144		
		6.4.1 State Minimization	148		
	6.5	Summary	150		
7	Controller for a FIFO Chip				
	7.1	Data Path	154		
	7.2	Behavioral Specification	155		
		7.2.1 Control Flow	156		
		7.2.2 Basic Block Data Flow Graphs	157		
		7.2.3 Data Flow in the Controller	158		
		7.2.4 Inter-Block Data Flow	159		
	7.3	Timing Constraints	160		
	7.4	Schedules	162		
	7.5	FSM Specification and Layout	172		
	7.6	Summary	175		
8	Con	clusions	177		
A	Imp	lementation	181		
B	Glo	bal Data Flow Graph Assembly	185		
	B .1	Definitions	186		
	B.2	Assembly Algorithms	188		
	Bib	liography	193		