

Structural Concrete

Textbook on Behaviour, Design and Performance

Updated knowledge of the CEB/FIP Model Code 1990

Volume 2 Basis of design

July 1999

Contents

•

4	Basis of Design	
4.1	Structural Analysis	
4.1.1 4.1.2 (1) (2) (2.1) (2.2) (2.3)	Introduction Elastic Analysis of Linear Members Basis of the theory Time dependent behaviour Creep at unbonded cables Creep after grouting Creep of systems	1 1 5 5 7 10
4.1.3 (1) (2) (2.1) (2.2) (2.3)	Elasto-plastic analysis of linear members Remarks on the strut-and-tie method Slabs Lower bound static method Strip-method according to Hillerborg/Marcus Yield line method	13 17 19 19 21 22
4.1.4 (1) (2) (2.1) (2.2) (2.3) (2.4)	Nonlinear analysis Basic equations - linear members Constitutive laws for plane biaxial RC-structures within a FE-code Concrete Steel Crack formation Remarks to the safety format in nonlinear calculations	25 25 30 30 35 35 37
4.1.5 (1) (2) (3) (4) (5) (6) (7)	Selected comments Variable inclination of compression diagonals in shear design Linear elastic computer codes for two-dimensional reinforced concrete members Evaluation of the prestressing state in T-beams Nonlinear stress ranges within inplane loaded plates Rough estimation of creep Torsional stiffness in statically indeterminate structures Modelling of reinforced concrete for a nonlinear calculation References for chapter 4.1	 37 37 38 38 38 39 39 40
4.2	Design format	
4.2.1 4.2.2 (1) (1.1) (1.2) (2) (2.1) (2.2) (3) (4) (5) (6) (6, 1)	Definitions of limit states Safety concept Theoretical connections Distribution, frequency and probability Parameters of distributions and densities Frequently used distribution functions in civil engineering Gaussian normal distribution The log - normal distribution Failure probability and reliability index Relation between reliability index and safety factors To the determination of the failure probability Determination of the partial safety factors General	43 44 44 45 46 46 46 48 49 53 55 57 57

(6.1) General

(6.2) (6.3)	Partial safety factors γ_m for resistance R Partial safety factors γ_c for concrete	58 59
4.2.3	Design format	60
(1)	General	60
(2)	Design format for the ultimate limit state	61
(3)	Design format for the limit state of serviceability	63
	References for chapter 4.2	65
4.3	Serviceability limit states (Principles)	
4.3.1	General	67
	References for chapter 4.3.1	74
4.3.2	Crack control	75
(1)	Causes and types of cracks	75
(1.1)	Early cracks and cracks induced by imposed deformations	75
(1.2)	Cracks induced by loads	77
(2)	Reasons for crack control, limits for crack widths	//
(3)	Definition of crack width	78 70
(4)	Phases of crack formation	79
(4.1)	Stabilized areaking phase	/9 01
(4.2)	Contribution of tensioned concrete between cracks	01 91
(5)	Definition of crack spacing	81 81
(0)	Approaches to crack control	82
(7,1)	Analytical procedures for crack control in reinforced concrete members	82
(7.1.1)	Assumptions	83
(7.1.2)	Physical laws	83
(7.1.3)	Equilibrium conditions	84
(7.1.4)	Compatibility conditions	85
(7.1.5)	Solutions for crack formation phase	85
(7.1.6)	Examples for crack formation phase	86
(7.1.7)	Solutions for stabilized cracking phase	86
(7.1.8)	Examples for stabilized cracking phase	87
(7.1.9)	MC90 approach	87
(7.2)	Cracking in two dimensional reinforced concrete members	91
(7.3)	Analytical procedures for crack control in prestressed concrete members	92
(7.4)	Practical rules for crack control	93
(7.4.1)	Limits for concrete tensile stresses	93
(7.4.2)	Limits for reinforcing bar diameter or bar spacing	93
(8)	Long term and cycles dependent cracking	93
(9)	Further examples	96
	References for chapter 4.3.2	100
4.3.3	Deformation	103
(1)	Introduction	103
(2)	Uniteria for deflection control	103
(2.1)	Limits to deflections	103
(2.2)	visible sag	104
(2.3)	Demoge to partitions of finishes	104
(2.4) (2.5)	Control of vibrations	105

Ĩ.

(3)	Basic equations for the calculation of deflections	107
(3.1)	Example Colculation of deflections by numerical integration	109
(4)	Calculation of deflections by numerical integration	112
(5)	Lang term deflections	11/
(0)	Long term deflections	120
(/)	Accuracy of deflection calculations	122
(8)	Simplifications to the calculation of deflections	124
(8.1)	Assuming that the distribution of curvature is proportional to the distribution of the moment	124
(82)	Simplified method given in CEB Model Code 90	125
(0.2)	Snan / denth ratios	123
(10)	Deformations and stresses due to temperature change	127
(10)	Temperature variations in service	131
(10.1)	Calculations of strasses and strains	132
(10.2)	Example	132
(10.3)	References for chapter 4.3.3	120
	References for chapter 4.5.5	139
4.4	Ultimate limit state (Principles)	
4.4.1	Basic design for moment, shear and torsion	141
(1)	Purpose and place of ultimate limit state design	141
(2)	Structural modelling	142
(3)	Limiting stresses for static design	145
(3.1)	Reinforcement	145
(3.2)	Concrete – generalities	145
(3.3)	Uncracked concrete in compression	146
(3.4)	Cracked concrete in compression	149
(3.3)	Avial load and flamma	150
(4)	Axial load and flexure	150
(4.1)	Dasic assumptions	150
(4.2)	Combined evid load out the dive	151
(4.5)	Combined axial load and bending	153
(4.4)	Combined choose and flower	155
(5)	Combined shear and nexure	156
(5.1)	Deama with shear rainforcement	156
(5.2)	Longitudinal shear in flanges	160
(5,5)	Distrograd home	169
(3.4)	Prestressed deams	175
(3.4.1)	Simple decien of cheen minforcement	1/5
(5.4.2)	Design of shear reinforcement in construction and setting	1/8
(5.4.5)	Columns	180
(5.5)	Torgion	184
(0)	Introduction	184
(6.1)	Torsion cracking	184
(0.2)	Beams in pure torgion	184
(0.5)	Torsion combined with shear and handing	18/
(0.1)	Plates and slabs	190
(7.1)	Introduction	173
(7.2)	Plates loaded in-plane	193
(7.3)	Combined in-plane and out-of-plane loading	200
(7.4)	Punching	200
(7.4.1)	Symmetrical punching at interior columns	202
	• •	

(7.4.2)	Eccentric punching	205
(7.4.3)	Slabs with shear reinforcement	211
(7.4.4)	Punching of prestressed slabs	216
	References for chapter 4.4.1	220
4.4.2	ULS of buckling	225
(1)	Introduction	225
(2)	Reduction of capacity	226
(3)	Effects of prestressing	227
(4)	Effects of restraints	228
(5)	Slenderness limits	230
(5.1)	Uniaxial bending	230
(5.2)	Biaxial bending	231
(5.3)	Frames	232
(6)	Analysis	232
(6.1)	General methods	232
(6.2)	Approximated methods	233
(6.2.1)	Uniaxial bending	233
(6.2.2)	Biaxial bending	234
(6.2.3)	Frames	235
(6.2.4)	Walls	236
(6.2.5)	Beams	237
(6.2.6)	Arches	238
(7)	Safety	238
(7.1)	Code provisions	238
(7.2)	Safety analyses	239
(8)	Detailing	239
4.4.3	Fatigue	241
(1)	Problem	241
(2)	Fatigue verification in Model Code 1990	243
(3)	Stress calculations under cyclic loads	246
(4)	Fatigue resistance of steel and concrete	247
(4.1)	Fatigue resistance of steel	247
(4.2)	Fatigue resistance of concrete and verification procedure	252
(5)	Application example	254
	References for chapter 4.4.3	256
4.4.4	Nodes	257
(1)	Introduction to the design of nodes	257
(1,1)	Location and significance of nodes	257
(1.2)	Mechanism of singular nodes	258
(2)	Principles for the verification of singular nodes and anchorage	260
(2.1)	General	260
(2.2)	Forces for the check of nodes	261
(2.3)	Representative strength values for nodes	261
(2.4)	Verification of nodes and anchorage	263
(3)	Typical nodes	264
(3.1)	Plane compression nodes	264
(3.2)	Plane compression-tension nodes	267
(3.2.1)	General	267
(3.2.2)	Standard node with anchorage of parallel bars only	268
(3.2.3)	Compression-tension node with bent bars	270

(3.2.4) (3.3) (4)	Standard nodes with ties in orthogonal directions Nodes with reduced support width and other three-dimensional nodes References and indication of numerical examples References for chapter 4.4.4	272 273 275 275
4.5	Anchorage and detailing principles	
4.5.1	Reasons and background for detailing rules	277
4.5.2	Arrangement of reinforcement	277
(1) (2)	Spacers	277
(2) (3)	Single bar spacing	270
(4)	Bundled bars spacing	279
(5)	Skin reinforcement for crack width control for thick and bundled bars	280
(6)	Allowable mandrel diameter	281
(7)	Minimum reinforcement ratio	281
4.5.3	Anchorage regions	282
(1)	Anchorage of reinforcing steel	282
(1.1)	Behaviour of anchorage for straight ends, hooks, bends, loops and welded	202
(1 2)	Cross dars Required anchorage length	282
(1.2) (1.3)	Transverse reinforcement	283
(1.4)	Anchorage of bundled bars	285
(2)	Anchorage of prestressing reinforcement	285
(2.1)	Required anchorage length of pretensioned prestressing reinforcement	285
(2.2)	Local reinforcement in load anchorage zone	286
(3)	Anchoring devices	287
4.5.4	Detailing of tensile bending reinforcement	288
(1)	Envelope line of the tensile force and the load balancing mechanism in	
	members subjected to bending and shear	288
(2)	Anchorage out of support	288
(3)	Anchorage over support	289
(4)	Distribution of the reinforcement in the cross - section of box girders $ar T$ because	200
	or 1 – beams	289
4.5.5	Splices in structural members	289
(1)	Lap splices in tension	289
(1.1) (1.2)	Benaviour of lap splices for straight bars, hooks, bents and loops	289
(1.2) (1.3)	Staggering and transverse spacing of tensioned bars in the splice region	293
(1.5) (1.4)	Required transverse reinforcement	295
(2)	Lap splices in compression	295
(2.1)	Required lap length of compressed bars	295
(2.2)	Staggering of compressed bars in splice region	296
(2.3)	Required transverse reinforcement	296
(3)	Lap splices of welded fabrics	296
(3.1)	Benaviour of intermeshed and layered fabrics with and without	200
(3.2)	Surrup - like cross dars Required lan length	296
(3.3)	Staggering of welded fabrics	270 299
(4)	Splices by welding	299

(5)	Splices by mechanical devices	300
(5.1)	Tension-compression connections	300
(4.2)	Compression only splices	301
(6)	Lap splices of bundled bars	301
4.5.6	Detailing of shear reinforcement	301
(1)	Efficiency of anchorage of shear reinforcement	301
(2)	Distribution of shear reinforcement	302
(2,1)	Location and minimum area of stirrups	302
(2.2)	Distribution of bent-up bars	303
4.5.7	Industrialisation of reinforcement	303
	References for chapter 4.5	305

Annex: Notations (green pages)