Chemical Reaction Engineering and Reactor Technology

Tapio Salmi

Åbo Akademi Åbo-Turku, Finland

Jyri-Pekka Mikkola

Umeå University, Umeå, Sweden

Johan Wärnå

Åbo Akademi Åbo-Turku, Finland

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

Contents

Preface	xix
Notations	xxiii
Chapter 1 Introduction	1
1.1 PRELIMINARY STUDIES	4
1.1.1 Reaction Stoichiometry, Thermodynamics, and Synthesis Routes	4
1.2 LABORATORY EXPERIMENTS	4
1.3 ANALYSIS OF THE EXPERIMENTAL RESULTS	5
1.4 SIMULATION OF REACTOR MODELS	6
1.5 INSTALLATION OF A PILOT-PLANT UNIT	
1.6 CONSTRUCTION OF THE FACILITY IN FULL SCALE	6
REFERENCES	7
CHAPTER 2 STOICHIOMETRY AND KINETICS	9
2.1 STOICHIOMETRIC MATRIX	10
2.2 REACTION KINETICS	12
2.2.1 Elementary Reactions	13
2.2.2 Kinetics of Nonelementary Reactions: Quasi-Steady-	
State and Quasi-Equilibrium Approximations	16
2.2.2.1 Ionic and Radical Intermediates	18

2.2.2.2 Catalytic Processes: Eley–Rideal Mechanism	20
2.2.2.3 Catalytic Processes: Langmuir–Hinshelwood Mechanism	24
REFERENCES	25
CHAPTER 3 HOMOGENEOUS REACTORS	27
3.1 REACTORS FOR HOMOGENEOUS REACTIONS	27
3.2 HOMOGENEOUS TUBE REACTOR WITH A PLUG FLOW	34
3.2.1 Mass Balance	35
3.2.2 Energy Balance	37
3.3 HOMOGENEOUS TANK REACTOR WITH PERFECT MIXING	40
3.3.1 Mass Balance	40
3.3.2 Energy Balance	41
3.4 HOMOGENEOUS BR	44
3.4.1 Mass Balance	44
3.4.2 Energy Balance	45
3.5 MOLAR AMOUNT, MOLE FRACTION, REACTION EXTENT,	
CONVERSION, AND CONCENTRATION	48
3.5.1 Definitions	48
3.5.2 Relation between Molar Amount, Extent of Reaction, Conversion	1,
and Molar Fraction	51
3.5.2.1 A System with a Single Chemical Reaction	51
3.5.2.2 A System with Multiple Chemical Reactions	52
3.5.3 Relationship between Concentration, Extent of Reaction, Conver	sion,
and Volumetric Flow Rate in a Continuous Reactor	55
3.5.3.1 Gas-Phase Reactions	55
3.5.3.2 Liquid-Phase Reactions	. 57
3.5.4 Relationship between Concentration, Extent of Reaction, Conver	sion,
and Iotal Pressure in a BK	59
3.5.4.1 Gas-Phase Reactions	59
3.5.4.2 Liquid-Phase Reactions	60
3.6 STUICHIOMETRY IN MASS BALANCES	61
3.7 EQUILIBRIUM REACTOR: ADIABATIC TEMPERATURE CHANGE	66
3.7.1 Mass and Energy Balances	66
3.8 ANALYTICAL SOLUTIONS FOR MASS AND ENERGY BALANCES) 68 71
3.8.1 Multiple Reactions	/1
3.8.1.1 First-Order Parallel Reactions	/1
3.8.1.2 Momentaneous and Integral Yield for Parallel Reactions	76
3.8.1.3 Reactor Selection and Operating Conditions for Parallel Re	actions 78
3.8.1.4 First-Oraer Consecutive Reactions	80
3.8.1.5 Consecutive-Competitive Reactions	83
3.8.1.6 Product Distributions in PFRs and BRs	84

3.8.1.7 Product Distribution in a CSTR	87
3.8.1.8 Comparison of Ideal Reactors	88
3.9 NUMERICAL SOLUTION OF MASS BALANCES FOR VARIOUS	
COUPLED REACTIONS	89
REFERENCES	92
HAPTER 4 NONIDEAL REACTORS: RESIDENCE TIME DISTRIBUTIONS	93
4.1 RESIDENCE TIME DISTRIBUTION IN FLOW REACTORS	93
4.1.1 Residence Time as a Concept	93
4.1.2 Methods for Determining RTDs	96
4.1.2.1 Volume Element	96
4.1.2.2 Tracer Experiments	97
4.2 RESIDENCE TIME FUNCTIONS	97
4.2.1 Population Density Function $E(t)$	98
4.2.2 Distribution Functions $F(t)$ and $F^*(t)$	100
4.2.3 Intensity Function $\lambda(t)$	101
4.2.4 Mean Residence Time	101
4.2.5 <i>C</i> Function	102
4.2.6 Dimensionless Time	102
4.2.7 Variance	103
4.2.8 Experimental Determination of Residence Time Functions	103
4.2.9 RTD for a CSTR and PFR	106
4.2.10 RTD in Tube Reactors with a Laminar Flow	108
4.3 SEGREGATION AND MAXIMUM MIXEDNESS	113
4.3.1 Segregation Model	113
4.3.2 Maximum Mixedness Model	114
4.4 TANKS-IN-SERIES MODEL	115
4.4.1 Residence Time Functions for the Tanks-in-Series Model	116
4.4.2 Tanks in Series as a Chemical Reactor	119
4.4.3 Maximum-Mixed Tanks-in-Series Model	120
4.4.4 Segregated Tanks in Series	120
4.4.5 Comparison of Tanks-in-Series Models	121
4.4.6 Existence of Micro- and Macrofluids	121
4.5 AXIAL DISPERSION MODEL	123
4.5.1 RTDs for the Axial Dispersion Model	123
4.5.2 Axial Dispersion Model as a Chemical Reactor	128
4.5.3 Estimation of the Axial Dispersion Coefficient	133
4.6 TUBE REACTOR WITH A LAMINAR FLOW	134
4.6.1 Laminar Reactor without Radial Diffusion	134
4.6.2 Laminar Reactor with a Radial Diffusion: Axial Dispersion Model	137
REFERENCES	139

CHAPTE	R 5 CATALYTIC TWO-PHASE REACTORS	141
5.1	REACTORS FOR HETEROGENEOUS CATALYTIC GAS- AND	
	LIQUID-PHASE REACTIONS	143
5.2	PACKED BED	156
	5.2.1 Mass Balances for the One-Dimensional Model	160
	5.2.2 Effectiveness Factor	162
	5.2.2.1 Chemical Reaction and Diffusion inside a Catalyst Particle	162
	5.2.2.2 Spherical Particle	168
	5.2.2.3 Slab	172
	5.2.2.4 Asymptotic Effectiveness Factors for Arbitrary Kinetics	174
	5.2,2.5 Nonisothermal Conditions	180
	5.2.3 Energy Balances for the One-Dimensional Model	184
	5.2.4 Mass and Energy Balances for the Two-Dimensional Model	189
	5.2.5 Pressure Drop in Packed Beds	198
5.3	FLUIDIZED BED	199
	5.3.1 Mass Balances According to Ideal Models	201
	5.3.2 Kunii-Levenspiel Model for Fluidized Beds	202
	5.3.2.1 Kunii–Levenspiel Parameters	20
5.4	PARAMETERS FOR PACKED BED AND FLUIDIZED BED REACTORS	210
REF	ERENCES	212
Снарте	R 6 CATALYTIC THREE-PHASE REACTORS	215
6.1	REACTORS USED FOR CATALYTIC THREE-PHASE REACTIONS	215
6.2	MASS BALANCES FOR THREE-PHASE REACTORS	227
	6.2.1 Mass Transfer and Chemical Reaction	227
	6.2.2 Three-Phase Reactors with a Plug Flow	229
	6.2.3 Three-Phase Reactor with Complete Backmixing	232
	6.2.4 Semibatch and BRs	233
	6.2.5 Parameters in Mass Balance Equations	234
6.3	ENERGY BALANCES FOR THREE-PHASE REACTORS	235
	6.3.1 Three-Phase PFR	235
	6.3.2 Tank Reactor with Complete Backmixing	236
	6.3.3 Batch Reactor	237
	6.3.4 Analytical and Numerical Solutions of Balance Equations for	
	Three-Phase Reactors	238
	6.3.4.1 Sulfur Dioxide Oxidation	238
	6.3.4.2 Hydrogenation of Aromatics	239
	6.3.4.3 Carbonyl Group Hydrogenation	242
REF	ERENCES	244

REFERENCES

Снарте	r 7 Gas–Liquid Reactors	247
7.1	REACTORS FOR NONCATALYTIC AND HOMOGENEOUSLY	
	CATALYZED REACTIONS	247
7.2	MASS BALANCES FOR IDEAL GAS-LIQUID REACTORS	256
	7.2.1 Plug Flow Column Reactor	259
	7.2.2 Tank Reactor with Complete Backmixing	261
	7.2.3 Batch Reactor	262
	7.2.4 Fluxes in Gas and Liquid Films	262
	7.2.4.1 Very Slow Reactions	266
	7.2.4.2 Slow Reactions	267
	7.2.4.3 Reactions with a Finite Velocity	268
	7.2.5 Fluxes in Reactor Mass Balances	281
	7.2.6 Design of Absorption Columns	284
	7.2.7 Gas and Liquid Film Coefficients, Diffusion Coefficients, and	
	Gas–Liquid Equilibria	287
7.3	ENERGY BALANCES FOR GAS-LIQUID REACTORS	289
	7.3.1 Plug Flow Column Reactor	289
	7.3.2 Tank Reactor with Complete Backmixing	291
	7.3.3 Batch Reactor	292
	7.3.4 Coupling of Mass and Energy Balances	293
	7.3.5 Numerical Solution of Gas-Liquid Reactor Balances	293
REF	ERENCES	295
Снарте	R 8 REACTORS FOR REACTIVE SOLIDS	297
8.1	REACTORS FOR PROCESSES WITH REACTIVE SOLIDS	297
8.2	MODELS FOR REACTIVE SOLID PARTICLES	300
	8.2.1 Definitions	300
	8.2.2 Product Layer Model	304
	8.2.2.1 First-Order Reactions	309
	8.2.2.2 General Reaction Kinetics: Diffusion Resistance as the	
	Rate-Determining Step	312
	8.2.3 Shrinking Particle Model	312
	8.2.3.1 First-Order Reactions	313
	8.2.3.2 Arbitrary Reaction Kinetics: Diffusion Resistance in the Gas	
	Film as the Rate-Determining Step	316
8. 3	MASS BALANCES FOR REACTORS CONTAINING A SOLID	
	REACTIVE PHASE	316
	8.3.1 Batch Reactor	316
	8.3.1.1 Particles with a Porous Product Layer	318
	8.3.1.2 Shrinking Particles	319
	8.3.2 Semibatch Reactor	321
	8.3.2.1 Particle with a Porous Product Layer	322

8.3.3 Packed Bed 322 REFERENCES 325 CHAPTER 9 TOWARD NEW REACTOR AND REACTION ENGINEERING 327 9.1 HOW TO APPROACH THE MODELING OF NOVEL REACTOR CONCEPTS? REACTOR STRUCTURES AND OPERATION MODES 329 9.2.1.1 Reactors with Catalyst Packings 322 9.2.1.2 Interfacial Transport 333 9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 344 9.2.5 Microreactor 346 9.3.1 RANSIENT OPERATION MODES AND DYNAMIC MODELING 349 9.3.1 Periodic Switching of Feed Composition 351 9.4.2 Microwaves 352 9.4.3 Nupercritical Fluids 362 9.4.4 I Onic Liquids 364 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 364	8.3.2.2 Shrinking Particle	322
REFERENCES325CHAPTER 9 TOWARD NEW REACTOR AND REACTION ENGINEERING3279.1 HOW TO APPROACH THE MODELING OF NOVELREACTOR CONCEPTS?3279.2 REACTOR STRUCTURES AND OPERATION MODES3299.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases3329.2.1.2 Interfacial Transport3339.2.1.4 Numerical Solution of the Column Reactor Model3349.2.1.5 Concluding Summary3369.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalyst Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.2.5 Microreactor3449.2.5 Microreactor3449.2.5 Microreactor3469.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 Ionic Liquids3649.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 IOR CASE: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1.1 Case Study: Delignification of Wood3679.6.3 UMMARY370REFERENCES37310.1 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310	8.3.3 Packed Bed	322
CHAPTER 9 TOWARD NEW REACTOR AND REACTION ENGINEERING 327 9.1 HOW TO APPROACH THE MODELING OF NOVEL REACTOR CONCEPTS? 327 9.2 REACTOR STRUCTURES AND OPERATION MODES 329 9.2.1 Reactors with Catalyst Packings 329 9.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases 333 9.2.1.3 Mass Balances for the Gas and Liquid Bulk Phases 333 9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341 9.2.3.5 Hiber Reactor 344 9.2.5 Microreactor 346 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Novel FORMS OF ENERGY AND REACTION MEDIA 355 9.4.4 I Oitic Liquids 362 9.4.5 Liquids 362 9.4.4	REFERENCES	325
9.1 HOW TO APPROACH THE MODELING OF NOVEL REACTOR CONCEPTS? 327 9.2 REACTOR STRUCTURES AND OPERATION MODES 329 9.2.1. Reactors with Catalyst Packings 329 9.2.1.1. Mass Balances for the Gas and Liquid Bulk Phases 332 9.2.1.2. Interfacial Transport 333 9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Monolith Reactors 336 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral 341 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 342 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 366 9.4.2 Microwaves 362 9.4.3 Uncrowaves 362 9.4.4 Ionic	CHAPTER 9 TOWARD NEW REACTOR AND REACTION ENGINEERING	327
REACTOR CONCEPTS?3279.2 REACTOR STRUCTURES AND OPERATION MODES3299.2.1.1 Reactors with Catalyst Packings3299.2.1.2 Interfacial Transport3339.2.1.3 Mass Balances for the Gatalyst Particles3339.2.1.4 Numerical Solution of the Catalyst Particles3339.2.1.5 Concluding Summary3369.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3.4 Homoreactor3429.2.4 Membrane Reactor3419.2.5 Microreactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3569.4.3 Urasound3669.4.3 Urasound3629.4.4.1 Case: Hydrogenation of Triglycerides3629.4.4.1 Case: Hydrogenation of Triglycerides3629.5.1 Case Study: Delignification of Wood3679.5.1 Case Study: Delignification of Wood3679.5.1 Chemical Reaction Engineering: Historical Remarks and Future Challenges37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING FOR CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.1 HOW TO APPROACH THE MODELING OF NOVEL	
9.2 REACTOR STRUCTURES AND OPERATION MODES3299.2.1.1 Reactors with Catalyst Packings3299.2.1.2 Interfacial Transport3339.2.1.2 Interfacial Transport3339.2.1.3 Mass Balances for the Catalyst Particles3339.2.1.4 Numerical Solution of the Catalyst Particles3339.2.1.5 Concluding Summary3369.2.2 Monolith Reactors3369.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 I Case: Hydrogenation of Triglycerides3629.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES37110.1 CHEMICAL REACTION ENGINEERING: HistorICAL REMARKS AND FUTURE CHALLENGES37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	REACTOR CONCEPTS?	327
9.2.1 Reactors with Catalyst Packings3299.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases3329.2.1.2 Interfacial Transport3339.2.1.3 Mass Balances for the Catalyst Particles3339.2.1.4 Numerical Solution of the Column Reactor Model3349.2.1.5 Concluding Summary3369.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwares3599.4.3 Supercritical Fluids3629.4.4 I Oric Liquids3649.5.1 Case: Hydrogenation of Triglycerides3629.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES37110.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	9.2 REACTOR STRUCTURES AND OPERATION MODES	329
9.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases 332 9.2.1.2 Interfacial Transport 333 9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2 Monolith Reactors 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 344 9.2.5 Microreactor 344 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 362 9.4.4 Ionic Liquids 362 9.5.1 Case Study: Delignification of Wood 367 9.5.1 Case Study: Delignification of Wood 367 <tr< td=""><td>9.2.1 Reactors with Catalyst Packings</td><td>329</td></tr<>	9.2.1 Reactors with Catalyst Packings	329
9.2.1.2 Interfacial Transport 333 9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2 Monolith Reactors 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 344 9.2.6 Microreactor 344 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 362 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 362 9.4.4 Ionic Liquids 365 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 3	9.2.1.1 Mass Balances for the Gas and Liquid Bulk Phases	332
9.2.1.3 Mass Balances for the Catalyst Particles 333 9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2 Monolith Reactors 336 9.2.2.1 Flow Distribution from CPD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 346 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 364 9.4.4.1 Case: Hydrogenation of Triglycerides 362 9.5.1 Case Study: Delignification of Wood 367 9.5.1 Chemical Reaction Engineering: H	9.2.1.2 Interfacial Transport	333
9.2.1.4 Numerical Solution of the Column Reactor Model 334 9.2.1.5 Concluding Summary 336 9.2.2 Monolith Reactors 336 9.2.2.1 Flow Distribution from CFD Calculations 338 9.2.2.2 Simplified Model for Reactive Flow 340 9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 346 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 364 9.4.4 Ionic Liquids 364 9.4.4 I Case: Hydrogenized ILs as Catalysts 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 10.1 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS 373 10.2 EARLY	9.2.1.3 Mass Balances for the Catalyst Particles	333
9.2.1.5Concluding Summary3369.2.2Monolith Reactors3369.2.2.1Flow Distribution from CFD Calculations3389.2.2.2Simplified Model for Reactive Flow3409.2.2.3Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3Fiber Reactor3429.2.4Membrane Reactor3449.2.5Microreactor3469.3TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1Periodic Switching of Feed Composition3519.3.2Reverse Flow Reactors3529.4NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1Ultrasound3569.4.2Microwaves3599.4.3Supercritical Fluids3629.4.4Ionic Liquids3649.4.1Case: Hydrogenation of Triglycerides3659.5EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1Case Study: Delignification of Wood3679.6SUMMARY370REFERENCES37110.1CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.2EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING37310.2EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.2.1.4 Numerical Solution of the Column Reactor Model	334
9.2.2 Monolith Reactors3369.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.5.1 Case Hydrogenation of Triglycerides3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	9.2.1.5 Concluding Summary	336
9.2.2.1 Flow Distribution from CFD Calculations3389.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 supercritical Fluids3629.4.4 Ionic Liquids3649.5.1 Case : Hydrogenation of Triglycerides3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES37110.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	9.2.2 Monolith Reactors	336
9.2.2.2 Simplified Model for Reactive Flow3409.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor3419.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.5.1 Case: Hydrogenation of Triglycerides3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES37310.1 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.2.2.1 Flow Distribution from CFD Calculations	338
9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral in the Monolith Reactor 341 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 346 9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING 349 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 364 9.5.1 Case: Hydrogenation of Triglycerides 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 10.1 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 373	9.2.2.2 Simplified Model for Reactive Flow	340
in the Monolith Reactor 341 9.2.3 Fiber Reactor 342 9.2.4 Membrane Reactor 344 9.2.5 Microreactor 346 9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING 349 9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.3.1 Case: Hydrogenation of Triglycerides 362 9.4.4 Ionic Liquids 364 9.5.1 Case: Heterogenized ILs as Catalysts 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.2.2.3 Application: Catalytic Three-Phase Hydrogenation of Citral	
9.2.3 Fiber Reactor3429.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.4.1 Case: Hydrogenation of Triglycerides3629.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES10.1 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	in the Monolith Reactor	341
9.2.4 Membrane Reactor3449.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	9.2.3 Fiber Reactor	342
9.2.5 Microreactor3469.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.4 Ionic Liquids3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37110.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.2.4 Membrane Reactor	344
9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING3499.3.1 Periodic Switching of Feed Composition3519.3.2 Reverse Flow Reactors3529.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.4 Ionic Liquids3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING373	9.2.5 Microreactor	346
9.3.1 Periodic Switching of Feed Composition 351 9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 362 9.4.4 Ionic Liquids 364 9.4.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 CHAPTER 10 CHEMICAL REACTION ENGINEERING: Historical REMARKS 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 373	9.3 TRANSIENT OPERATION MODES AND DYNAMIC MODELING	349
9.3.2 Reverse Flow Reactors 352 9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA 355 9.4.1 Ultrasound 356 9.4.2 Microwaves 359 9.4.3 Supercritical Fluids 362 9.4.4 Ionic Liquids 364 9.4.4 Ionic Liquids 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 CHAPTER 10 CHEMICAL REACTION ENGINEERING: Historical REMARKS 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 373	9.3.1 Periodic Switching of Feed Composition	351
9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA3559.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.3 Supercritical Fluids3629.4.4 Ionic Liquids3649.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: Historical Remarks AND FUTURE CHALLENGES37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.3.2 Reverse Flow Reactors	352
9.4.1 Ultrasound3569.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.3 Supercritical Fluids3629.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.4 NOVEL FORMS OF ENERGY AND REACTION MEDIA	355
9.4.2 Microwaves3599.4.3 Supercritical Fluids3629.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.4.1 Ultrasound	356
9.4.3 Supercritical Fluids3629.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.4.2 Microwaves	359
9.4.3.1 Case: Hydrogenation of Triglycerides3629.4.4 Ionic Liquids3649.4.4.1 Case: Heterogenized ILs as Catalysts3659.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS3669.5.1 Case Study: Delignification of Wood3679.6 SUMMARY370REFERENCES371CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS37310.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	9.4.3 Supercritical Fluids	362
9.4.4 Ionic Liquids 364 9.4.4.1 Case: Heterogenized ILs as Catalysts 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 Chapter 10 Chemical Reaction Engineering: Historical Remarks 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.4.3.1 Case: Hydrogenation of Triglycerides	362
9.4.4.1 Case: Heterogenized ILs as Catalysts 365 9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.1 CHEMICAL REACTION ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.4.4 Ionic Liquids	364
9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS 366 9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 Chapter 10 Chemical Reaction Engineering: Historical Remarks 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.1 CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.4.4.1 Case: Heterogenized ILs as Catalysts	365
9.5.1 Case Study: Delignification of Wood 367 9.6 SUMMARY 370 REFERENCES 371 Chapter 10 Chemical Reaction Engineering: Historical Remarks 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 10.1 CHEMICAL REACTION ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.5 EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS	366
9.6 SUMMARY 370 REFERENCES 371 Chapter 10 Chemical Reaction Engineering: Historical Remarks 373 And Future Challenges 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.5.1 Case Study: Delignification of Wood	36/
REFERENCES 371 CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	9.6 SUMMARY	3/0
CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS AND FUTURE CHALLENGES 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	REFERENCES	3/1
AND FUTURE CHALLENGES 373 10.1 CHEMICAL REACTION ENGINEERING AS A PART OF 373 CHEMICAL ENGINEERING 373 10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	CHAPTER 10 CHEMICAL REACTION ENGINEERING: HISTORICAL REMARKS	ገማሳ
10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING37310.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING374	AND FUTURE CHALLENGES	3/3
10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING 374	10.1 CHEMICAL REACTION ENGINEERING AS A PART OF CHEMICAL ENGINEERING	372
	10.2 EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING	374

10.3 TH	E ROOTS OF CHEMICAL REACTION ENGINEERING	375
10.4 Uf	NDERSTANDING CONTINUOUS REACTORS	
105 DC	D TRAINSPORT FILENOMENA	3/6
10.5 FC	MERICAL MATHEMATICS AND COMPLITING DEVELOR	3//
10.0 TK	ACHING THE NEXT CENERATION	3/8
10.7 TL	PANSION OF CHEMICAL REACTION ENGINEEDING.	3/9
TO	WARD NFW PARADIGMS	380
FURTH	R READING	382
Chapter 11	Exercises	383
Chapter 12	Solutions of Selected Exercises	445
Appendix 1	Solutions of Algebraic Equation Systems	535
······		
Appendix 2	SOLUTIONS OF ODES	537
A2.1 SE	MI-IMPLICIT RUNGE-KUTTA METHOD	537
A2.2 LINEAR MULTISTEP METHODS		539
REFERE	NCES	541
Appendix 3	COMPUTER CODE NLEODE	543
A3.1 SU	BROUTINE FCN	544
A3.2 SU	BROUTINE FCNJ	544
REFERE	NCES	547
Appendix 4	Gas-Phase Diffusion Coefficients	549
REFERE	NCE	552
Appendix 5	FLUID-FILM COEFFICIENTS	553
A5.1 G/	AS-SOLID COEFFICIENTS	553
A5.2 GAS-LIOUID AND LIOUID-SOLID COEFFICIENTS		554
REFERE	NCES	555
Appendix 6	LIQUID-PHASE DIFFUSION COEFFICIENTS	557
A6.1 N	EUTRAL MOLECULES	557
A6.2 10	NS	558
REFERE	NCES	562

Appendix 7	CORRELATIONS FOR GAS-LIQUID SYSTEMS	563			
A7.1 BU	UBBLE COLUMNS	563			
A7.2 PACKED COLUMNS					
A7.3 SY	MBOLS	567			
A7.4 IN	DEX	568			
A7.5 DI	MENSIONLESS NUMBERS	568			
REFERE	NCES	568			
APPENDIX 8	Gas Solubilities	569			
REFERE	NCES	572			
APPENDIX 9	LABORATORY REACTORS	573			
A9.1 FL	OW PATTERN IN LABORATORY REACTORS	573			
A9.2 M	ASS TRANSFER RESISTANCE	574			
A9.3 HG	DMOGENEOUS BR	575			
A9.4 HO	DMOGENEOUS STIRRED TANK REACTOR	577			
A9.5 FIXED BED IN THE INTEGRAL MODE A9.6 DIFFERENTIAL REACTOR A9.7 GRADIENTLESS REACTOR					
			A9.8 BRs FOR TWO- AND THREE-PHASE PROCESSES		582
			A9.9 Cl	ASSIFICATION OF LABORATORY REACTOR MODELS	584
REFERE	NCES	585			
Appendix 10	ESTIMATION OF KINETIC PARAMETERS FROM EXPERIMENTAL DATA	587			
A10.1	COLLECTION OF KINETIC DATA	587			
A10.2	INTEGRAL METHOD	590			
A10.3	DIFFERENTIAL METHOD	594			
A10.4	RECOMMENDATIONS	596			
A10.5	INTRODUCTION TO NONLINEAR REGRESSION	596			
A10.6	GENERAL APPROACH TO NONLINEAR REGRESSION IN				
	CHEMICAL REACTION ENGINEERING	598			
REFERE	NCES	604			
AUTHOR IND	EX	605			
Subject Ind	EX	607			