

USA

OFFICIAL

PROCEEDINGS

OF THE TWENTY-SECOND

INTERNATIONAL

INTELLIGENT MOTION 1992

CONFERENCE

SEPTEMBER 20-24, 1992 IRVINE, CALIFORNIA

This Book is the Property of

INTELLIGENT MOTION • SEPTEMBER 1992 PROCEEDINGS I

INTELLIGENT MOTION '92 - SEPTEMBER TABLE OF CONTENTS

Technical Papers and Authors	Session No.	Page No.
Motors & Actuators		
New Squirrel Cage Motor Construction High Efficiency Adjustable-Speed Drive With Direct Connection to the AC Line —P. Clarke, Clarke Associates	IM1.1	•
Performance of New High Strain Magnetostrictive Materials & High Power, Long Stroke Actuators and Transducers —M. Goodfriend, Edge Technology	IM1.2	*
The Elastic Wave Motor - A Versatile Terfenol Driven, Linear Actuator With High Force and Great Precision —Reinhold C. Roth, President DynaMotive Corporation	IM1.3	1
Types of Two-Phase and Five-Phase Step Motors —D. Jones, J. Koike et al, Oriental Motors	iM1.4	*
Control Methodology for Commercial Magnetic Bearing Systems —Ron Kipp, Joe Imlach, Kingsbury, Inc	IM1.5	9
Twice-sf Beat Phenomena of Three-Phase Induction Motor With Rotor-Bar Fault —Osamu Sugiura, Yamanashi University; Yuji Akiyama, Kamagawa Institute of Technology	IM1.6	18
Effects of Mechanical Stress on Switched Reluctance Machine Performance —A. Krinickas, D. Belanger, Sundstrand	IM1.7	28
Motion Systems #1		
A 15,000 RPM, 40 HP Adjustable-Speed Motor Drive System Using 300A/1200V IGBTs for Industrial Applications —R. Palma, J. He, K. Chen, C. Wong, S. Nordhauser, REM Technologies	IM2.1	35
Structural Analysis on Reliable Operation of Digital Servo Systems —Dal Y. Ohm, Cygnet Systems, Inc.	IM2.2	47
Synchronizing Motion to External Events — <i>Curtis S. Wilson, Delta Tau Data Systems</i>	IM2.3	55
Low Frequency Vibration Control Using a Low-Cost DSP Chip —Charley Melear, Motorola Semiconductor	IM2.4	*
Observer and Adaptive Migration for Monolithic Power IC Subsystems —J. Comparetto, Allegro MicroSystems	IM2.5	*
Foolproof Operation From Incremental Position Sensors —Larry Hayes, Motorola Semiconductor	IM2.6	64

Technical Papers and Authors	Session No.	Page No.	
Thermal Design & Packaging Achieving			
Introduction: Power Packaging Design —Jeff Fishbein, International Rectifier	IM3.0	70	
Achieving Higher Levels of Integration for Commercial and Industrial Power Applications, Package Substrate Choices —Herbert J. Fick, The Bergquist Co.	IM3.1	71	
System Cost Advantages of Power Integration — <i>B. Jones, Consultant (Emerson)</i>	IM3.2	*	
Power Hybrids Reliability Advantages —Abraham Katzanek, Rafael	IM3.3	76	
Integrated Power Module Requirements for Automotive Applications: Achieving Higher Power Density —John M. Miller, Ford Motor Company	IM3.4	83	
PCIM Semiconductors #1			
Low Cost Power Supply Using Smart Power MOSFET —Marco Bildgen, Jean-Marie Bourgeois, SGS-Thomson	IM4.1	91	
Adoption of Advanced Materials in Hybrid Packaging Technique for Ultra High Power Semiconductor Devices Ngon Binh Nguyen, Westinghouse Electronic Systems Group	IM4.2	99	
Implications of Moving to 3V for Analog Circuits —Steve Goacher, Texas Instruments	IM4.3	103	
A New Mixed Technology Process and Design Techniques for Power ASIC Manufacturing R. Teggatz, J. Devore, D. Cotton, T. Efland, Texas Instruments Inc	IM4.4	115	
Advanced CMOS Polysilicon Thin-Film Transistor Process G. Dolny, et al, Harris Semiconductor	IM4.5	*	
PCIM Semiconductors #2			
Accurate Junction Temperature Calculation Optimizes IGBT Selection for Maximum Performance and Reliability S. M. Clemente, D. A. Dapkus II. International Rectifier	IM5.1	128	
Applying High Voltage Half Bridge Driver ICs Successfully —George E. Danz, Keith E. Jackoski, Harris Semiconductor	IM5.2	142	
Switching Modern Gate Controlled Devices —A. Galluzzo, M. Melito, SGS-Thomson	IM5.3	*	
A Power Semiconductor Diode With an Integrated Reverse-Voltage Sensor —George V. Manduteanu, IPRS Baneasa (Romania)	IM5.4	153	
IGBT User Guidelines —Ken Dierberger, Advanced Power Technology	IM5.5	157	

Technical Papers and Authors	Session No.	Page No.	
Digital ICs for Motion Systems			
Programming Motion Controllers With PC Memory Cards —Roy Richards, Fujitsu Microelectronics, Inc.	IM6.1	163	
DSP for Embedded Systems —T. Shultz, G. Hillman, Motorola Semiconductor	IM6.2	*	
Fuzzy Logic: From Software to Silicon - A Primer —Camerone Welch, Togai InfraLogic, Inc	IM6.3	172	
PC-On-A-Chip Cuts Embedded Controller Size, Power and Cost —Suresh Agarwal, Chips & Technologies	IM6.4	183	
Motion Systems #2			
Brushless Motion Technology - A Market & Technical Update —George Gulalo, Motor Tech Trends	IM7.1	187	
An Overview of Modern Step Motor Control Methods —Albert C. Leenhouts, Consultant, Litchfield Engineering Co	IM7.2	195	
Servo Amplifier Design for Switched Reluctance Motors —G. Holling, Advanced Motion Control	IM7.3	*	
High-Current DC Motor Drive Uses Low On-Resistance Surface Mount MOSFETs —Ken Berringer, Motorola, Inc	IM7.4	205	
Increasing the High-Speed Torque of Bipolar Stepper Motors —Steven Hunt, National Semiconductor	IM7.5	217	
Motion Systems #3			
Sensorless Motor Commutation —K. Schwartz, Allegro MicroSystems	IM8.1	*	
Vector Control Using A Single Vector Rotation Semiconductor for Induction and Permanent Magnet Motors —F. P., Flett, Analog Devices	IM8.2	225	
"Smart-Power, Systems-In-A-Module" Provide Control and Drive for High-Power, 3-Phase Brushless Motors —Paul. R. Emerald, Omnirel Corporation	IM8.3	236	
Stepper Controller Runs at 3 Million Pulses/Sec —Stephen D. Holle, Technology 80, Inc.	IM8.4	249	
DC Motor Selection Criteria —M. Rogen, Maxon Precision Motors	IM8.5	*	
Smart Power Disk Drive VCM Drivers —A. Stryer, Allegro MicroSystems	IM8.6	*	

ŧ

*Papers not available at time of printing, may or may not be available at conference.