Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene, and TPO

Michael Tolinski

Table of Contents

PF	REF/	ACE		 	 	 	 	 	xiii

Section I: Overview of Polyolefins and Additives

CHAPTER 1	Intr	oduction	3
		Importance of POs	
	1.2	Importance of PO additives	4
	1.3	Recent issues in using additives	5
		1.3.1 Matching property requirements with additive type and amount	
		1.3.2 Doing more with less material	
		1.3.3 New properties for new markets	7
		1.3.4 Unintended additive interactions	7
		1.3.5 Faster processing	8
CHAPTER 2	Trei	nds in Polyolefin and Additive Use	9
	2.1	PO market trends	9
		2.1.1 Growth vs. volatility	10
		2.1.2 Future resin growth and prices	10
a d'Al Alberta des La Alberta d	2.2	Overall trends in additives production and use	11
	2.3	Trends in resin compounding	12
a da fili general de la companya de la constante da Companya da constante da constant	2.4	Trends in specific PO applications	13
		2.4.1 Packaging trends	14
		2.4.2 Automotive trends for POs	
Carling and a second for the second se		2.4.3 Construction and infrastructure application	
1946 - Lander Martin, Barrier († 1930) Den skiel stander († 1930)		trends	18

V

Section II:	Environmental	Resistance
-------------	---------------	------------

CHAPTER 3	Antioxidants and Heat Stabilization
	3.1 Importance of AOs and stabilizers for POs
	3.2 Primary and secondary AOs
	3.2.1 Primary AOs (radical scavengers)
	3.2.2 Secondary AOs (peroxide decomposers)
	3.3 Factors determining AO selection
	3.3.1 Thermal and color requirements in melt
	processing and in service
	3.3.2 AO selection by PO type and finished product
	form
	3.3.3 AO physical forms and handling
	3.3.4 Synergies and antagonistic interactions
	3.3.5 Cost40
	3.3.6 Environmental, food-contact, and health and
	safety considerations41
CHAPTER 4	Ultraviolet Light Protection and Stabilization
	4.1 UV degradation of POs47
	4.2 UV blockers, screeners, and absorbers
	4.2.1 UV-blocking and -absorbing fillers and pigments48
	4.2.2 Organic UV absorbers
	4.3 Quenchers and peroxide decomposers
	4.4 HALS: Free-radical scavengers
	4.4.1 Overview of HALS51
	4.4.2 Interactions of HALS and other additives
	4.5 Factors determining stabilizer selection
	4.5.1 General factors
	4.5.2 Light stabilizers for specific PO applications56
CHAPTER 5	Flame-Retarding Additives
	5.1 Overview: The need for flame-retardant formulations 61
	5.1.1 Trends in flame-retarding additives61
	5.1.2 Mechanisms of burning62
	5.2 Halogen-based flame retardants
	5.2.1 Composition of H-FRs64
	5.2.2 Concerns about halogenated FRs66
	5.3 Mineral-based flame retardants
	5.3.1 ATH and MDH68
	5.3.2 Other mineral fillers' FR effects

	5.4	Intun	nescent and phosphorous-based flame retardants	s 70
		5.4.1	Mechanisms of phosphorous FRs	70
		5.4.2	Issues in improving phosphorous FRs	71
	5.5		rs determining the selection of FR additives	
		5.5.1	Cost, risk, and performance	74
		5.5.2	Property effects and co-additive interactions	75
		5.5.3	FR density and form	76
		5.5.4	Halogen-free benefits (and costs)	77
CHAPTER 6	Ad	ditive	s for Modifying Electrical Properties	79
	6.1		tatic and ESD additives	
		6.1.1	Migrating chemical antistats	81
		6.1.2	Nonmigrating polymers as permanent	
			antistatic/ESD additives	85
		6.1.3	Conductive fillers as antistatic/ESD additives	86
	6.2	EMI s	shielding	88
		6.2.1	Conductive fillers for EMI shielding	88
		6.2.2	Conductive fibers for EMI shielding	89
	6.3	Choo	sing antistat/ESD/EMI additives	89
		6.3.1	Antistat selection factors	89
		6.3.2	Design considerations for EMI shielding	90

Section III: Mechanical Property Enhancement

CHAPTER 7	Overview of Fillers and Fibers	95
	7.1 Importance of fillers and fibers for POs	96
	7.2 Common inorganic fillers	96
	7.2.1 Calcium carbonate	97
	7.2.2 Talc	
	7.2.3 Wollastonite	
	7.2.4 Mica	100
	7.2.5 Silica	
	7.2.6 Glass flour and spheres	
	7.2.7 Other microfillers	
	7.3 Nanofillers	
	7.3.1 Potential of nanofillers	
	7.3.2 Platy nanoclays	
	7.3.3 Nanotubes	
	7.3.4 POSS nanomaterials	
	7.4 Impact modifiers and TPOs	
	7.4.1 Impact modification for thick products	
	7.4.2 Impact modification for film and sheet	

	7.5	Fiber 1	einforcement	110
		7.5.1	Short glass fibers	111
		7.5.2	Long glass fibers	112
		7.5.3	Plant-based fibers	115
		7.5.4	Other kinds of fiber reinforcement	118
CHAPTER 8			etermining the Selection of Fillers	101
				121
	8.1		g costs and improving properties with	122
	8.2	Impac	t modification: Balancing stiffness with	
		toughr	1ess	124
	8.3	Mecha	nical reinforcement: Properties create	
		opport	unities	126
	8.4	Proces	sing pitfalls and hidden costs	128
	8.5	Questi	ons when choosing fillers and fibers	132

Section IV: Appearance Enhancement

CHAPTER 9	Col	lorants		139
	9.1	Colori	ng strategies	.139
		9.1.1	White colorants	.140
		9.1.2	Black colorants	.141
		9.1.3	Full-spectrum colorants	.141
		9.1.4	Metallic colorants	.145
		9.1.5	Pearlescent colorants and color-enhancing	
			additives	. 147
	9.2	Colora	nt delivery and processing	.148
		9.2.1	Colorant delivery	.148
		9.2.2	Processing issues with colorants	.150
	9.3	Factor	s that affect the choice of colorant	.151
		9.3.1	General factors	.151
		9.3.2	Additive/colorant interactions	.155
		9.3.3	External coatings vs. internal colorants	.156
CHAPTER 10	Nuc	leation	and Clarity	157
	10.1	Nuclea	ating agents: Overview	.157
		10.1.1	Nucleating agent effects on processing and	
			properties	.158
		10.1.2	Clarifying nucleating agents	.162

10.2	Factor	s in choosing nucleating/clarifying agents	164
	10.2.1	Applications and resins	164
	10.2.2	Practical use factors	166

Section V: Processing Aids

CHAPTER 11	Proc	essing	Aids for Molding 171
	11.1	Melt-f	low modification and mold release171
		11.1.1	Melt-flow-enhancing lubricants and
			modifiers
		11.1.2	Mold-release additives175
	11.2	Specia	l cases for processing aids in molding177
		11.2.1	Aids for molding highly filled compounds 177
		11.2.2	Aids for ISBM178
		11.2.3	Aids for rotational molding179
CHAPTER 12	Proc	essing	Aids for Extrusion
	12.1	Requir	rements of extrusion-based processes
	12.2	Slip ag	jents
	12.3	Antibl	ocking agents184
		12.3.1	Inorganic antiblocks184
		12.3.2	Organic antiblocks186
		12.3.3	Clarity/slip antiblocks188
	12.4	Additi	ves for reducing melt fracture and die
		buildu	p
		12.4.1	Fluoropolymer processing aids190
		12.4.2	Reducing die and screen-pack fouling191
	12.5		sing aids for specific extrusion situations191
			High-throughput extrusion191
			LLDPE blown-film stability192
			Oriented PP slit tape fibrillation192
			Thin PP fibers
			Highly filled masterbatch production193
		12.5.6	Wood-plastic composites193
Section VI:	Oth	er Mo	difications of Form and Function

CHAPTER 13	Reducing	Density: Polyolefin Foams	197
	13.1 Blowi	ng foams: External agents vs. internal	
	agent	s	
	13.1.1	Physical blowing agents	
	13.1.2	Chemical blowing agents	

	13.2	Produ	ct sectors requiring chemical	
		blowiı	ng agents	200
		13.2.1	Molded packaging and consumer products	s200
		13.2.2	Automotive moldings	201
		13.2.3	Extruded construction products	202
		13.2.4	Foaming in rotational molding	202
	13.3	Factor	s in blowing better foams	203
CHAPTER 14	Cou	pling,	Compatibilizing, Recycling, and	
	Biod	legrad	ability	205
	14.1	Coupli	ing fillers and fibers with the PO matrix	205
		14.1.1	Traditional coupling agents	206
		14.1.2	Alternative coupling agents	207
	14.2	Compa	atibilizers for integrating regrind and recycl	ed
		materi	als	209
	14.3	Additi	ves that promote PO biodegradability	212
CHAPTER 15	Cros	slinkir	ng	215
	15.1	Crossl	inked PE: advantages and applications	215
	15.2	Crossl	inking agents	217
		15.2.1	Peroxide-based agents	217
		15.2.2	Silane-based agents	218
		15.2.3	Radiation-induced crosslinking	219
	15.3	Factor	s in choosing crosslinking agents	219
CHAPTER 16	Steri	lizatio	n and Radiation Resistance	221
	16.1	Steriliz	ation effects on PO products	221
		16.1.1	Effects of irradiation sterilization	221
		16.1.2	Effects of EtO sterilization	223
		16.1.3	Effects of high-temperature sterilization	223
	16.2	Additi	ve solutions for sterilization-resistant POs	223
CHAPTER 17	Aest	hetics	Enhancement and Surface	
	Mod	ificatio	n	225
	17.1	Anti-s	cratch additives	226
		17.1.1	Conventional anti-scratch approaches	226
		17.1.2	Evaluating anti-scratch additives	227
		17.1.3	Alternative anti-scratch additives	227
	17.2	Antifo	gging agents	228
	17.3	Antim	icrobials and biocides	229
	17.4	Odor-n	nodifying additives	231

•

Section VII: Conclusion: Incorporating Additives

CHAPTER 18	Adding Additives to Resin		235
	18.1	Handling additives	235
		18.1.1 Practical handling issues	236
		18.1.2 Health and safety issues	236
	18.2	Mixing and dispersing additives into resin	237
		18.2.1 Screw-processing developments	237
		18.2.2 "Lean" compounding	238
	18.3	Blending and feeding additives	238
	18.4	Choosing the best form of an additive	239
REFERENCES			243
INDEX			275