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preface
In 2007, I gave a talk about using Boo to build your own domain-specific languages

(DSLs) atJAOO (http://jaoo.dk), a software conference in Denmark. I had been work¬

ing with Boo and creating DSLs since 2005, but as I prepared for the talk, I was sur¬

prised to see just how easy it was to build DSLs with Boo. (I find that teaching

something gives you a fresh perspective on it.)

That experience, and the audience's response, convinced me that you don't have

to be a compiler expert or a parser wizard to build your own mini-languages. I realized

that I needed to formalize the practices I had been using and make them publicly
available.

One of the most challenging problems in the industry today is finding a way of

clearly expressing intent in a particular domain. A lot of time and effort has been

spent tackling that problem. A DSL is usually a good solution, but there is a strong per¬

ception in the community that writing your own language for a particular task is an

extremely difficult task.

The truth is different from the perception. Creating a language from scratch

would be a big task, but you don't need to start from scratch. Today, there are lots of

tools and plenty of support for creating languages. When you decide to make an inter¬

nal DSL—one that is hosted inside an existing programming language (such as

Boo)—the cost of building that language drops significantly.
I routinely build new languages during presentations (onstage, within 5 or 10 min¬

utes), because once you understand the basic principles, it is easy. Easy enough that it

deserves to be a standard part of your toolset, ready to be used whenever you spot a

problem that is suitable for a DSL solution.

xv


