
DSLs in Boo
Domain-Specific Languages in .NET

OREN EINI

writing AS AYENDE RAHIEN

ii

MANNING

Greenwich

(74° w. long.)



contents

preface xv

acknowledgments xvii

about this book xviii

about the author xx

about the cover illustration xxi

1 What are domain-specific languages? 1

1.1 Striving for simplicity 2

Creating simple code 3 Creating clear code 3

Creating intention-revealing code 4

1.2 Understanding domain-specific languages 5

Expressing intent 6 • Creating your own languages 6

1.3 Distinguishing between DSL types 7

External DSLs 7 Graphical DSLs 9 " Fluent interfaces 10

Internal or embedded DSLs 12

1.4 Why write DSLs? 13

Technical DSLs 14 Business DSLs 14 Automatic or

extensible DSLs 16

1.5 Boo's DSL capabilities 16

1.6 Examining DSL examples 18

Brail 18 > Rhino ETL 19 Bake (Boo Build System) 19

Specter 20

1.7 Summary 20

ix



X CONTENTS

2 An overview ofthe Boo language 22

2.1 Why use Boo? 23

2.2 Exploring compiler extensibility 24

2.3 Basic Boo syntax 25

2.4 Boo's built-in language-oriented features 29

String interpolation 29 Is, and, not, and or 30 Optional
parentheses 30 Anonymous blocks 31 Statement modifiers 31

Naming conventions 32 • Extension methods 33 Extension

properties 34 The IQuackFu interface 34

2.5 Summary 37

3 The drive toward DSLs 39

3.1 Choosing the DSL type to build 40

The difference between fluent interfaces and DSLs 40

Choosing between a fluent interface and a DSL 42

3.2 Building different types ofDSLs 43

Building technical DSLs 43 Building business DSLs 45

Building Extensibility DSLs 47

3.3 Fleshing out the syntax 47

3.4 Choosing between imperative and declarative DSLs 48

3.5 Taking a DSL apart—what makes it tick? 51

3.6 Combining domain-driven design and DSLs 53

Language-oriented programming in DDD 53 Applying a DSL

in a DDD application 54

3.7 Implementing the Scheduling DSL 56

3.8 Running the Scheduling DSL 59

3.9 Summary 61

4 Building DSLs 63

4.1 Designing a system with DSLs 64

4.2 Creating the Message-Routing DSL 65

Designing the Message-Routing DSL 65

4.3 Creating the Authorization DSL 72

Exploring the Authorization DSL design 73 Building the
Authorization DSL 76

4.4 The "dark side" of using a DSL 78

4.5 The Quote-Generation DSL 78

Building business-facing DSLs 80 Selecting the appropriate
medium 83

4.6 Summary 84



CONTENTS xi

5 Integrating DSLs into your applications 86

5.1 Exploring DSL integration 86

5.2 Naming conventions 88

5.3 Ordering the execution ofscripts 91

Handling ordering without order 91 Ordering by name 92

Prioritizing scripts 92 Ordering using external configuration 94

5.4 Managing reuse and dependencies 94

5.5 Performance considerations when using a DSL 96

Script compilation 97 Script execution 97 Script
management 98 Memory pressure 98

5.6 Segregating the DSL from the application 98

Building your own security infrastructure 99 Segregating the

DSL 99 Considerations for securing a DSL in your application 101

5.7 Handling DSL errors 102

Handling runtime errors 102 Handling compilation errors 104

Error-handling strategies 104

5.8 Administrating DSL integration 105

5.9 Summary 106

6 Advanced complier extensibility approaches 108

6.1 The compiler pipeline 109

6.2 Meta-methods 110

6.3 Quasi-quotation 113

6.4 AST macros 115

The unroll macro 116 Building macros with the MacroMacro 118

Analyzing the using macro 120 Building an SLA macro 123

Using nested macros 124

6.5 AST attributes 126

6.6 Compiler steps 128

Compiler structure 129 Building the implicit base class compiler
step 130

6.7 Summary 132

7 DSL infrastructure with Rhino DSL 134

7.1 Understanding a DSL infrastructure 135

7.2 The structure of Rhino DSL 136

The DslFactory 136 The DslEngine 137 Creating a custom

IDslEngineStorage 139

7.3 Codifying DSL idioms 143

ImplicitBaseClassCompilerStep 143 AutoReferenceFilesCompilerStep 144

AutoImportCompilerStep 144 UseSymbolsStep 144



CONTENTS

145

155 Testing the DSL

160 Creating the

UnderscoreNamingConventionsToPascalCaseCompilerStep
GeneratePropertyMacro 146

7.4 Batch compilation and compilation caches 146

7.5 Supplying external dependencies to our DSL 148

7.6 Summary 149

Testing DSLs 150

8.1 Building testable DSLs 150

8.2 Creating tests for a DSL 151

Testing the syntax 152 Testingthe DSLAPI

engine 158

8.3 Testing the DSL scripts 160

Testing DSL scripts using standard unit testing

Testing DSL 162

8.4 Integrating with a testing framework 166

8.5 Taking testing further 171

Building an application-testing DSL 171 Mandatory testing 171

8.6 Summary 172

Versioning DSLs 173

9.1 Starting from a stable origin 174

9.2 Planning a DSL versioning story 175

Implications of modifying the DSL engine 175 Implications of

modifying the DSLAPI and model 176 Implications ofmodifying the

DSL syntax 177 Implications of modifying the DSL

environment 177

9.3 Building a regression test suite 178

9.4 Choosing a versioning strategy 179

Abandon-ship strategy 179 Single-shot strategy 179 Additive-

change strategy 180 Tower of Babel strategy 181 Adapter
strategy 182 The great-migration strategy 184

9.5 Applying versioning strategies 185

Managing safe, additive changes 185 Handling required breaking
change 187

9.6 DSL versioning in the real world 190

Versioning Brail 190 Versioning Binsor 190 Versioning Rhino

ETL 191

9.7 When to vetsion

9.8 Summary 193

192



CONTENTS xiii

10 Creating a professional Ulfor a DSL 194

10.1 Creating an IDE for a DSL 195

Using Visual Studio as your DSL IDE 196 Using #develop as your
DSL IDE 198

10.2 Integrating an IDE with a DSL application 198

Extending #develop highlighting for our DSLs 200 • Adding code

completion to our DSL 203 Adding contextual code completion
support for our DSL 206

10.3 Creating a graphical representation for a textual DSL 209

Displaying DSL execution 209 Creating a UI dialect 211

Treating code as data 212

10.4 DSL code generation 216

The CodeDOM provider for Boo 216 Specific DSL writers 217

10.5 Handling errors and warnings 219

10.6 Summary 220

11 DSLs and documentation 221

11.1 Types of documentation 222

11.2 Writing the Getting Started Guide 223

Begin with an introduction 224 Provide examples 224

11.3 Writing the User Guide 225

Explain the domain and model 225 Document the language

syntax 227 Create the language reference 230 Explain debugging
to business users 231

11.4 Creating the Developer Guide 232

Outline the prerequisites 232 Explore the DSL's

implementation 232 Document the syntax implementation 233

Documenting AST transformations 236

11.5 Creating executable documentation 237

11.6 Summary 238

12 DSL implementation challenges 239

12.1 Scaling DSL usage 240

Technical'—managing large numbers of scripts 240 Performing
precompilation 241 Compiling in the background 243

Managing assembly leaks 243

12.2 Deployment—strategies for editing DSL scripts
in production 244



CONTENTS

12.3 Ensuring system transparency 246

Introducing transparency to the Order-Processing DSL 246

Capturing the script filename 248 Accessing the code at runtime 248

Processing the AST at runtime 250

12.4 Changing runtime behavior based on AST information 251

12.5 Data mining your scripts 253

12.6 Creating DSLs that span multiple files 254

12.7 Creating DSLs that span multiple languages 256

12.8 Clearing user-extensible languages 256

The basics ofuser-extensible languages 256 Creating the Business-

Condition DSL 258

12.9 Summary 262

13 A real-worldDSL implementation 263

13.1 Exploring the scenario 264

13.2 Designing the order-processing system 265

13.3 Thinking in tongues 267

13.4 Moving from an acceptable to an excellent language 269

13.5 Implementing the language 271

Exploring the treatment of statement's implementation 273

Implementing the upon and when keywords 274 Tracking which file

is the source ofa policy 276 Bringing it all together 276

13.6 Using the language 278

13.7 Looking beyond the code 280

Testing our DSL 280 Integrating with the user interface 281

Limited DSL scope 282

13.8 Going beyond the limits of the language 282

13.9 Summary 283

appendix A Boo basic reference 285

appendix B Boo language syntax 302

index 313



preface
In 2007, I gave a talk about using Boo to build your own domain-specific languages

(DSLs) atJAOO (http://jaoo.dk), a software conference in Denmark. I had been work¬

ing with Boo and creating DSLs since 2005, but as I prepared for the talk, I was sur¬

prised to see just how easy it was to build DSLs with Boo. (I find that teaching

something gives you a fresh perspective on it.)

That experience, and the audience's response, convinced me that you don't have

to be a compiler expert or a parser wizard to build your own mini-languages. I realized

that I needed to formalize the practices I had been using and make them publicly
available.

One of the most challenging problems in the industry today is finding a way of

clearly expressing intent in a particular domain. A lot of time and effort has been

spent tackling that problem. A DSL is usually a good solution, but there is a strong per¬

ception in the community that writing your own language for a particular task is an

extremely difficult task.

The truth is different from the perception. Creating a language from scratch

would be a big task, but you don't need to start from scratch. Today, there are lots of

tools and plenty of support for creating languages. When you decide to make an inter¬

nal DSL—one that is hosted inside an existing programming language (such as

Boo)—the cost of building that language drops significantly.
I routinely build new languages during presentations (onstage, within 5 or 10 min¬

utes), because once you understand the basic principles, it is easy. Easy enough that it

deserves to be a standard part of your toolset, ready to be used whenever you spot a

problem that is suitable for a DSL solution.

xv


