
97 Things
Every Programmer Should Know

Collective Wisdom from the Experts

Edited by Kevlin Henney

O'REILLY
Beijing • Cambridge Farnham Koln Sebastopol • Taipei • Tokyo



Contents

Contributions by Category xv

Preface xxiii

Act with Prudence 2

Seb Rose

Apply Functional Programming Principles 4

Edward Garson

Ask, "What Would the User Do?" (You Are Not the User) . .

6

Giles Colborne

Automate Your Coding Standard 8

Filip van Laenen

Beauty Is in Simplicity 10

]0rn 0lmheim

Before You Refactor 12

Rajith Attapattu

Beware the Share 14

Udi Dahan

v



The Boy Scout Rule 16

Robert C. Martin (Uncle Bob)

Check Your Code First Before Looking to Blame Others. . . 18

Allan Kelly

Choose Your Tools with Care 20

Giovanni Asproni

Code in the Language of the Domain 22

Dan North

Code Is Design 24

Ryan Brush

Code Layout Matters 26

Steve Freeman

Code Reviews 28

Mattias Karlsson

Coding with Reason 30

Yechiel Kimchi

A Comment on Comments 32

Cal Evans

Comment Only What the Code Cannot Say 34

Kevlin Henney

Continuous Learning 36

Clint Shank

Convenience Is Not an -ility 38

Gregor Hohpe

vi Contents



Deploy Early and Often 40

Steve Berczuk

Distinguish Business Exceptions from Technical 42

Dan Bergh Johnsson

Do Lots of Deliberate Practice 44

Jon Jagger

Domain-Specific Languages 46

Michael Hunger

Don't Be Afraid to Break Things 48

Mike Lewis

Don't Be Cute with Your Test Data 50

Rod Begbie

Don't Ignore That Error! 52

Pete Goodliffe

Don't Just Learn the Language, Understand Its Culture
. .

54

Anders Noras

Don't Nail Your Program into the Upright Position 56

Verity Stob

Don't Rely on "Magic Happens Here" 58

Alan Griffiths

Don't Repeat Yourself 60

Steve Smith

Don't Touch That Code! 62

Cal Evans

Contents VII



Encapsulate Behavior, Not Just State 64

Einar Landre

Floating-Point Numbers Aren't Real 66

Chuck Allison

Fulfill Your Ambitions with Open Source 68

Richard Monson-Haefel

The Golden Rule of API Design 70

Michael Feathers

The Guru Myth 72

Ryan Brush

Hard Work Does Not Pay Off 74

Olve Maudal

How to Use a Bug Tracker 76

Matt Doar

Improve Code by Removing It 78

Pete Goodliffe

Install Me 80

Marcus Baker

Interprocess Communication Affects Application
Response Time 82

Randy Stafford

Keep the Build Clean 84

Johannes Brodwall

Know How to Use Command-Line Tools 86

Carroll Robinson

viii Contents



Know Well More Than Two Programming Languages. ...

88

Russel Winder

Know Your IDE 90

Heinz Kabutz

Know Your Limits 92

Greg Colvin

Know Your Next Commit 94

Dan Bergh Johnsson

Large, Interconnected Data Belongs to a Database 96

Diotnidis Spinellis

Learn Foreign Languages 98

Klaus Marquardt

Learn to Estimate 100

Giovanni Asproni

Learn to Say, "Hello, World" 102

Thomas Guest

Let Your Project Speak for Itself 104

Daniel Lindner

The Linker Is Not a Magical Program 106

Walter Bright

The Longevity of Interim Solutions 108

Klaus Marquardt

Make Interfaces Easy to Use Correctly
and Hard to Use Incorrectly 110

Scott Meyers

Contents 'x



Make the Invisible More Visible 112

Jon Jagger

Message Passing Leads to Better Scalability
in Parallel Systems 114

Russel Winder

A Message to the Future 116

Linda Rising

Missing Opportunities for Polymorphism 118

Kirk Pepperdine

News of the Weird: Testers Are Your Friends 120

Burk Hufnagel

One Binary 122

Steve Freeman

Only the Code Tells the Truth 124

Peter Somrnerlad

Own (and Refactor) the Build 126

Steve Berczuk

Pair Program and Feel the Flow 128

Gudny Hauknes, Kari R0ssland, and Ann Katrin Gagnat

Prefer Domain-Specific Types to Primitive Types 130

Einar Landre

Prevent Errors 132

Giles Colborne

The Professional Programmer 134

Robert C. Martin (Uncle Bob)

x Contents



Put Everything Under Version Control 136

Diomidis Spinellis

Put the Mouse Down and Step Away from the Keyboard .
138

Burk Hufnagel

Read Code 140

Karianne Berg

Read the Humanities 142

Keith Braithwaite

Reinvent the Wheel Often 144

Jason P. Sage

Resist the Temptation of the Singleton Pattern 146

Sam Saariste

The Road to Performance Is Littered

with Dirty Code Bombs 148

Kirk Pepperdine

Simplicity Comes from Reduction 150

Paul W. Homer

The Single Responsibility Principle 152

Robert C. Martin (Uncle Bob)

Start from Yes 154

Alex Miller

Step Back and Automate, Automate, Automate 156

Cay Horstmann

Take Advantage of Code Analysis Tools 158

Sarah Mount

Contents *'



Test for Required Behavior, Not Incidental Behavior 160

Kevlin Henney

Test Precisely and Concretely 162

Kevlin Henney

Test While You Sleep (and over Weekends) 164

Rajith Attapattu

Testing Is the Engineering Rigor
of Software Development 166

Neal Ford

Thinking in States 168

Niclas Nilsson

Two Heads Are Often Better Than One 170

Adrian Wible

Two Wrongs Can Make a Right (and Are Difficult to Fix) .
172

Allan Kelly

Ubuntu Coding for Your Friends 174

Aslam Khan

The Unix Tools Are Your Friends 176

Diomidis Sptnellis

Use the Right Algorithm and Data Structure 178

Jan Christiaan "JC" van Winkel

Verbose Logging Will Disturb Your Sleep 180

Johannes Brodwall

xii Contents



WET Dilutes Performance Bottlenecks 182

Kirk Pepperdine

When Programmers and Testers Collaborate 184

Janet Gregory

Write Code As If You Had to Support It

for the Rest of Your Life 186

Yuriy Zubarev

Write Small Functions Using Examples 188

Keith Braithwaite

Write Tests for People 190

Gerard Meszaros

You Gotta Care About the Code 192

Pete Goodlijfe

Your Customers Do Not Mean What They Say 194

Nate Jackson

Contributors 196

Index 221

Contents xlii


