Mathematics for Informatics and Computer Science

Pierre Audibert

Table of Contents

General Introduction	xxiii
Chapter 1. Some Historical Elements	1
1.1. Yi King	1
1.2. Flavor combinations in India	2
1.3. Sand drawings in Africa	3
1.4. Galileo's problem	4
1.5. Pascal's triangle	7
1.6. The combinatorial explosion: Abu Kamil's problem, the palm grove	
problem and the Sudoku grid	9
1.6.1. Solution to Abu Kamil's problem	11
1.6.2. Palm Grove problem, where $N = 4$.	12
1.6.3. Complete Sudoku grids	12
	14
PART 1. COMBINATORICS	17
Part 1. Introduction	19
Chapter 2. Arrangements and Combinations	21
2.1. The three formulae	21
2.2. Calculation of C_n^p , Pascal's triangle and binomial formula.	25
2.3. Exercises	27
2.3.1. Demonstrating formulae.	27
2.3.2. Placing rooks on a chessboard	28
2.3.2. Flacing rices on a chessboard	
2.3.3. Placing pieces on a chessboard.	29
2.3.4. Pascal's triangle modulo k.	30
2.3.5. Words classified based on their blocks of letters	31
2.3.6. Diagonals of a polygon	33

vi	Mathematics	for	Informatics	and	Computer	Science
----	-------------	-----	-------------	-----	----------	---------

2.3.7. Number of times a number is present in a list of numbers \ldots \ldots 2.3.8. Words of length <i>n</i> based on 0 and 1 without any block	35
of 1s repeated	37
in itself following the form of their graph	39 42
Chapter 3. Enumerations in Alphabetical Order	43
3.1. Principle of enumeration of words in alphabetical order	43
3.2. Permutations	44
3.3. Writing binary numbers	46
3.3.1. Programming	46
3.3.2. Generalization to expression in some base B	46
3.4. Words in which each letter is less than or equal to the position	47
3.4.1. Number of these words	47
3.4.2. Program	47
3.5. Enumeration of combinations	47
3.6. Combinations with repetitions	49
3.7. Purchase of P objects out of N types of objects	49
3.8. Another enumeration of permutations	50
3.9. Complementary exercises	52
3.9.1. Exercise 1: words with different successive letters	52
3.9.2. Exercise 2: repeated purchases with a given sum of money	56
3.10. Return to permutations	58
3.11. Gray code	60
Chapter 4. Enumeration by Tree Structures	63
4.1. Words of length n, based on N letters 1, 2, 3,, N, where each letter	
is followed by a higher or equal letter	63
4.2. Permutations enumeration	66
4.3. Derangements	67
4.4. The queens problem	69
4.5. Filling up containers	72
4.6. Stack of coins	76
4.7. Domino tiling a chessboard	79
Chapter 5. Languages, Generating Functions and Recurrences	85
5.1. The language of words based on two letters.	85
5.2. Domino tiling a 2×n chessboard.	88
5.3. Generating function associated with a sequence	89

5.4. Rational generating function and linear recurrence	91
5.5. Example: routes in a square grid with rising shapes	
without entanglement.	92
5.6. Exercises on recurrences	94
5.6.1. Three types of purchases each day with a sum of N dollars \ldots	94
5.6.2. Word building.	96
5.7. Examples of languages	98
5.7.1. Language of parts of an element set $\{a, b, c, d,\}$ 5.7.2. Language of parts of a multi-set based on n elements a, b, c , etc.,	98
where these elements can be repeated as much as we want	99
5.7.3. Language of words made from arrangements taken from n distinct and non-repeated letters a, b, c , etc., where these words are shorter than	
or equal to <i>n</i>	99
5.7.4. Language of words based on an alphabet of n letters	100
5.8. The exponential generating function	100
5.8.1. Exercise 1: words based on three letters a, b and c ,	101
with the letter <i>a</i> at least twice.	101
5.8.2. Exercise 2: sending n people to three countries, with at least	
one person per country	103
Chapter 6. Routes in a Square Grid	105
6.1. Shortest paths from one point to another	105
our exerces paule near one point to another	105
6.2. <i>n</i> -length paths using two (perpendicular) directions of	105
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	105
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing 	
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 	
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 6.4. Number of <i>n</i>-length paths that neither touch nor cross the axis 	108
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 6.4. Number of <i>n</i>-length paths that neither touch nor cross the axis of the adscissae until and including the final point . 	108
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid	108 109
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 6.4. Number of <i>n</i>-length paths that neither touch nor cross the axis of the adscissae until and including the final point . 6.5. Number of <i>n</i>-length paths above the horizontal axis that can touch but not cross the horizontal axis . 	108 109
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 6.4. Number of <i>n</i>-length paths that neither touch nor cross the axis of the adscissae until and including the final point. 6.5. Number of <i>n</i>-length paths above the horizontal axis that can touch but not cross the horizontal axis. 6.6. Exercises . 	108 109 110
 6.2. <i>n</i>-length paths using two (perpendicular) directions of the square grid. 6.3. Paths from O to B (n, x) neither touching nor crossing the horizontal axis and located above it. 6.4. Number of <i>n</i>-length paths that neither touch nor cross the axis of the adscissae until and including the final point . 6.5. Number of <i>n</i>-length paths above the horizontal axis that can touch but not cross the horizontal axis . 	108 109 110 111
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	108 109 110 111 112
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	108 109 110 111 112 112
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	108 109 110 111 112 112 113 113
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	108 109 110 111 112 112 112
6.2. <i>n</i> -length paths using two (perpendicular) directions of the square grid	108 109 110 111 112 112 113 113

Chapter 7. Arrangements and Combinations with Repetitions	119
7.1. Anagrams	119
7.2. Combinations with repetitions	121
7.2.1. Routes in a square grid	121
7.2.2. Distributing (indiscernible) circulars in personalized letter boxes .	121
7.2.3. Choosing I objects out of N categories of object	121
7.2.4. Number of positive or nul integer solutions to	
the equation $x0 + x1 + + xn - 1 = P$	122
7.3. Exercises	125
7.3.1. Exercise 1: number of ways of choosing six objects out of three	
categories, with the corresponding prices	125
7.3.2. Exercise 2: word counting	125
7.3.3. Exercise 3: number of words of P characters based on an alphabet	
of N letters and subject to order constraints	127
7.3.4. Exercise 4: choice of objects out of several categories taking	
at least one object from each category	128
7.3.5. Exercise 5: choice of P objects out of N categories	
when the stock is limited	128
7.3.6. Exercise 6: generating functions associated with the number	
of integer solutions to an equation with <i>n</i> unknowns	129
7.3.7. Exercise 7: number of solutions to the equation $x + y + z = k$,	
where k is a given natural integer and $0 \le x \le y \le z \dots \dots \dots \dots$	130
7.3.8. Exercise 8: other applications of the method using	
generating functions	131
7.3.9. Exercise 9: integer-sided triangles	132
7.3.10. Revision exercise: sending postcards	133
7.4. Algorithms and programs	135
7.4.1. Anagram program	135
7.4.2. Combinations with repetition program	136
Chapter 8. Sieve Formula	137
8.1. Sieve formula on sets	138
8.2. Sieve formula in combinatorics	142
8.3. Examples	142
8.3.1. Example 1: filling up boxes with objects, with at least one box	
remaining empty	142
8.3.2. Example 2: derangements	144
8.3.3. Example 3: formula giving the Euler number $\varphi(n)$	145
8.3.4. Example 4: houses to be painted	146
8.3.5. Example 5: multiletter words	148
8.3.6. Example 6: coloring the vertices of a graph	150

8.4. Exercises	153
8.4.1. Exercise 1: sending nine diplomats, 1, 2, 3,, 9,	
to three countries A, B, C	153
8.4.2. Exercise 2: painting a room	153
8.4.3. Exercise 3: rooks on a chessboard	155
8.5. Extension of sieve formula.	158
8.5.1. Permutations that have k fixed points	159
8.5.2. Permutations with q disjoint cycles that are k long	160
8.5.3. Terminal nodes of trees with <i>n</i> numbered nodes	161
8.5.4. Revision exercise about a word: intelligent	163
Chapter 9. Mountain Ranges or Parenthesis Words: Catalan Numbers	165
9.1. Number $c(n)$ of mountain ranges $2n \log \ldots \ldots \ldots \ldots \ldots \ldots$	166
9.2. Mountains or primitive words	167
9.3. Enumeration of mountain ranges	168
9.4. The language of mountain ranges	169
9.5. Generating function of the C_{2n}^{n} and Catalan numbers	171
9.6. Left factors of mountain ranges	173
9.6.1. Algorithm for obtaining the numbers of these left factors $a(N, X)$.	175
9.6.2. Calculation following the lines of Catalan's triangle	176
9.6.3. Calculations based on the columns of the Catalan triangle	177
9.6.4. Average value of the height reached by left factors.	178
9.6.5. Calculations based on the second bisector of the Catalan triangle .	180
9.6.6. Average number of mountains for mountain ranges	183
9.7. Number of peaks of mountain ranges	184
9.8. The Catalan mountain range, its area and height	187
on the square grid.	187
9.8.2. Sum of the elements of lines in triangle OO'B of mountain	107
ranges $2n \log \ldots$	188
9.8.3. Sum of numbers in triangle $OO'B$	189
9.8.4. Average area of a mountain $2n \log \ldots$	190
9.8.5. Shape of the average mountain range	192
9.8.6. Height of the Catalan mountain range.	194
Chapter 10. Other Mountain Ranges	197
10.1. Mountain ranges based on three lines \square \square \square \square \square	197
10.2. Words based on three lines \square \square with as many	
rising lines as falling lines	198

x Mathematics for Informatics and Computer Science

10.2.1. Explicit formula $v(n)$	199
 10.2.2. Return to u(n) number of mountain ranges based on three letters a, b, c and a link with v(n)	200 200 204 207 207 208
10.5. Mountain ranges based on three types of lines $\sum \sum 1$	210
10.6. Example 3: movement of the king on a chessboard	213
Chapter 11. Some Applications of Catalan Numbers and Parenthesis Words	215
 11.1. The number of ways of placing n chords not intersecting each other on a circle with an even number 2n of points. 11.2. Murasaki diagrams and partitions. 11.3. Path couples with the same ends in a square grid. 11.4. Path couples with same starting point and length. 11.5. Decomposition of words based on two letters as a product of words 	215 216 218 220
linked to mountain ranges	222
Chapter 12. Burnside's Formula	227
 12.1. Example 1: context in which we obtain the formula	227 231
of a square12.2.2. Example 2: pawns on a chessboard12.2.3. Example 3: pearl necklaces12.2.4. Example 4: coloring of a stick12.3. Exercises12.3.1. Coloring the vertices of a square12.3.2. Necklaces with stones in several colors12.3.3. Identical balls in identical boxes12.3.4. Tiling an Aztec diamond using <i>l</i> -squares12.3.5. The 4×4 Sudoku: search for fundamentally differentsymmetry-type girls	 232 232 237 239 239 239 241 244 244 244
Chapter 13. Matrices and Circulation on a Graph	253
13.1. Number of paths of a given length on a complete or a regular graph . 13.2. Number of paths and matrix powers	254 255

and a second sec

 13.2.1. Example 1: n-length words in an alphabet of three letters 1, 2, 3, with prohibition of blocks 11 and 23	257 259
13.2.3. Example 2: <i>n</i> -length words based on three letters 1, 2, 3	
with blocks 11, 22 and 33 prohibited	261
13.3. Link between cyclic words and closed paths in an oriented graph	262
13.4. Examples	263
13.4.1. Dominos on a chessboard	263
13.4.2. Words with a dependency link between two successive	
letters of words	265
13.4.3. Routes on a graded segment.	266
13.4.4. Molecular chain	270
Chapter 14. Parts and Partitions of a Set	275
14.1. Parts of a set	275
14.1.1. Program getting all parts of a set	275
14.1.2. Exercises	277
14.2. Partitions of a <i>n</i> -object set	281
14.2.1. Definition	281
14.2.2. A second kind of Stirling numbers, and partitions of a n-element	
set in k parts	281
14.2.3. Number of partitions of a set and Bell numbers	283
14.2.4. Enumeration algorithm for all partitions of a set	285
14.2.5. Exercise: Sterling numbers modulo 2	286
Chapter 15. Partitions of a Number	289
15.1. Enumeration algorithm	289
15.2. Euler formula	209
15.3. Exercises.	290
15.3.1. Exercise 1: partitions of a number n in k distinct elements	292
15.3.2. Exercise 2: ordered partitions	292
15.3.3. Exercise 3: sum of the products of all the ordered partitions	290
of a number	297
15.3.4. Exercise 4: partitions of a number in completely distinct parts	298
15.3.5. Exercise 5: partitions and routes in a square grid	299
15.3.6. Exercise 6: Ferrers graphs	302
Chapter 16. Flags	305
16.1. Checkered flags	305
16.2. Flags with vertical stripes	306

Chapter 17. Walls and Stacks	315
 17.1. Brick walls 17.2. Walls of bricks made from continuous horizontal rows 17.2.1. Algorithm for classifying various types of walls 17.2.2. Possible positions of one row above another 17.2.3. Coordinates of bricks 17.3. Heaps 17.4. Stacks of disks 17.5. Stacks of disks with continuous rows 17.6. Horizontally connected polyominos 	 315 316 317 317 318 319 322 324 326
Chapter 18. Tiling of Rectangular Surfaces using Simple Shapes	331
 18.1. Tiling of a 2×n chessboard using dominos. 18.1.1. First algorithm for constructing tilings 18.1.2. Second construction algorithm 18.2. Other tilings of a chessboard 2×n squares long 18.2.1. With squares and horizontal dominos 18.2.2. With squares and horizontal or vertical dominos 18.2.3. With dominos and <i>l</i>-squares we can turn and reflect 18.2.4. With squares, <i>l</i>-squares and dominos 18.3. Tilings of a 3×n chessboard using dominos 18.4. Tilings of a 4×n chessboard with dominos 18.5. Domino tilings of a rectangle 	331 332 333 334 334 335 335 336 337 339 340
Chapter 19. Permutations	345
 19.1. Definition and properties	345 347
 in cycles	349 352 353 354
19.3.1. Generating function of the number of inversions 19.3.2. Signature of a permutation: odd and even permutations	356 357
19.4. Conjugated permutations	359 360 361
19.5.2. S_n is generated by transpositions of adjacent elements of the form $(i, i + 1)$.	362
19.5.3. S_n is generated by transpositions (0 1) (0 2) (0 $n-1$)	362

19.5.4. S_n is generated by cycles (0 1) and (0 1 2 3 $n-1$)	363
19.6. Properties of the alternating group A_n	363
19.6.1. A_n is generated by cycles three units long: $(i j k)$	363
19.6.2. A_n is generated by $n-2$ cycles $(0 \ 1 \ k)$	363
19.6.3. For $n > 3$, A_n is generated by the cycle chain three units long,	202
of the form $(0\ 1\ 2)\ (2\ 3\ 4)\ (4\ 5\ 6)\ \dots\ (n-3\ n-2\ n-1)\ \dots\ \dots$	364
19.7. Applications of these properties $\dots \dots \dots$	365
19.7.1. Card shuffling	365
19.7.2. Taquin game in a n by p (n and $p > 1$) rectangle	368
19.7.2. Furthing game in a n by p (n and $p > 1$) rectangle.	371
19.7.4. Exchanges of lines and columns in a square	
19.7.4. Exchanges of lines and columns in a square	375
19.8. Exercises on permutations	376
19.8.1. Creating a permutation at random	376
19.8.2. Number of permutations $\begin{pmatrix} 0 & 1 & 2 & \dots & n-1 \\ a(0) & a(1) & a(2) & \dots & a(n-1) \end{pmatrix}$	
$a(0) a(1) a(2) \dots a(n-1)$	
with <i>n</i> elements 0, 1, 2,, $n - 1$, such that $ a(i) - i = 0$ or 1	377
19.8.3. Permutations with $a(i) - i = \pm 1$ or ± 2	379
19.8.4. Permutations with <i>n</i> elements 0, 1, 2,, $n-1$ without	517
two consecutive elements	379
19.8.5. Permutations with n elements 0, 1, 2,, $n-1$, made up of a	515
single cycle in which no two consecutive elements modulo n are found .	381
19.8.6. Involute permutations	383
19.8.7. Increasing subsequences in a permutation	383 384
19.8.8. Riffle shuffling of type O and I for N cards when N	304
is a power of 2	386
	200
PART 2. PROBABILITY	207
I AKI 2. I KUDADILII Y	387
Part 2. Introduction	200
	389
Chapter 20. Reminders about Discrete Probabilities	395
	.
20.1. And/or in probability theory	396
20.2. Examples	398
20.2.1. The Chevalier de Mere problem	398
20.2.2. From combinatorics to probabilities	399
20.2.3. From combinatorics of weighted words to probabilities	400
20.2.4. Drawing a parcel of objects from a box	401
20.2.5. Hypergeometric law	40 1
20.2.6. Draws with replacement in a box	402
20.2.7. Numbered balls in a box and the smallest number	
obtained during draws	403

20.2.8. Wait for the first double heads in a repeated game	
of heads or tails	404
20.2.9. Succession of random cuts made in a game of cards	405
20.2.10. Waiting time for initial success	407
20.2.11. Smallest number obtained during successive draws	409
20.2.12. The pool problem	411
20.3. Total probability formula	412
20.3.1. Classic example	412
20.3.2. The formula	413
20.3.3. Examples	413
20.4. Random variable X, law of X, expectation and variance	418
20.4.1. Average value of X	418
20.4.2. Variance and standard deviation	418
20.4.3. Example	419
20.5. Some classic laws	420
20.5.1. Bernoulli's law	420
20.5.2. Geometric law	420
20.5.3. Binomial law	421
20.6. Exercises	422
20.6.1. Exercise 1: throwing balls in boxes	422
20.6.2. Exercise 2: series of repetitive tries	423
20.6.3. Exercise 3: filling two boxes	425
Chapter 21 Chapter and the Computer	427
Chapter 21. Chance and the Computer	
21.1. Random number generators	428
21.2. Dice throwing and the law of large numbers	429
21.3. Monte Carlo methods for getting the approximate value	
of the number π	430
21.4. Average value of a random variable X, variance	
and standard deviation	432
21.5. Computer calculation of probabilities, as well as expectation	
and variance, in the binomial law example	433
21.6. Limits of the computer	437
21.7. Exercises	439
21.7.1. Exercise 1: throwing balls in boxes	439
21.7.2. Exercise 2: boys and girls	439
21.7.3. Exercise 3: conditional probability.	441
21.8. Appendix: chi-squared law	443
21.8.1. Examples of the test for uniform distribution.	443
21.8.2. Chi-squared law and its link with Poisson distribution	445

Chapter 22. Discrete and Continuous	447
22.1. Uniform law	448
22.1.1. Programming	448
22.1.2. Example 1	449
22.1.3. Example 2: two people meeting	450
22.2. Density function for a continuous random variable	
and distribution function	451
22.3. Normal law	452
22.4. Exponential law and its link with uniform law	454
22.4.1. An application: geometric law using exponential law	456
22.4.2. Program for getting the geometric law with parameter p	457
22.5. Normal law as an approximation of binomial law	458
22.6. Central limit theorem: from uniform law to normal law	460
22.7. Appendix: the distribution function and its inversion – application	
to binomial law $B(n, p)$	465
22.7.1. Program	465
22.7.2. The inverse function	467
22.7.3. Program causing us to move from distribution function	
to probability law	468
Chapter 23. Generating Function Associated with a Discrete Random	
Variable in a Game	469
23.1. Generating function: definition and properties	469
23.2. Generating functions of some classic laws.	470
23.2.1. Bernoulli's law	470
23.2.2. Geometric law	470
23.2.3. Binomial law	473
23.2.4. Poisson distribution	475
23.3. Exercises	476
23.3.1. Exercise 1: waiting time for double heads in a game of heads	
or tails	476
23.3.2. Exercise 2: in a repeated game of heads or tails, what is the parity	
of the number of heads?	481
23.3.3. Exercise 3: draws until a certain threshold is exceeded	482
23.3.4. Exercise 4: Pascal's law	487
23.3.5. Exercise 5: balls of two colors in a box	488
23.3.6. Exercise 6: throws of N dice until each gives the number $1 \dots$	492
Chapter 24. Graphs and Matrices for Dealing with Probability Problems.	497
24.1. First example: counting of words based on three letters	497
24.1. First example: counting of words based on the references	499

xvi Mathematics for Informatics and Computer Science

24.3. Examples	500
or tails	500
24.3.2. Draws from three boxes	503
24.3.3. Alternate draws from two boxes	505
24.3.4. Successive draws from one box to the next.	506
Chapter 25. Repeated Games of Heads or Tails	509
25.1. Paths on a square grid	509
equiprobable tosses	511
25.2.1. Probability $p(n, x)$ of getting winnings of x at the end of n moves	512
25.2.2. Standard deviation in relation to a starting point.	512
25.2.3. Probability $\rho(2n')$ of a return to the origin at stage $n = 2n' \dots$	513
25.3. Probabilities of certain routes over <i>n</i> moves	514
25.4. Complementary exercises.	516
25.4.1. Last visit to the origin	516
25.4.2. Number of winnings sign changes throughout the game	517
25.4.3. Probability of staying on the positive winnings side for a certain	
amount of time during the $N = 2n$ equiprobable tosses.	519
25.4.4. Longest range of winnings with constant sign	520
25.5. The gambler's ruin problem	521
25.5.1. Probability of ruin.	522
25.5.2. Average duration of the game	524
25.5.3. Results and program	525
25.5.4. Exercises	526
25.5.5. Temperature equilibrium and random walk.	530
Chapter 26. Random Routes on a Graph	535
26.1. Movement of a particle on a polygon or graduated segment	535
26.1.1. Average duration of routes between two points	535
26.1.2. Paths of a given length on a polygon.	542
26.1.3. Particle circulating on a pentagon: time required using one side	
or the other to get to the end	546
26.2. Movement on a polyhedron	547
26.2.1. Case of the regular polyhedron	547
26.2.2. Circulation on a cube with any dimensions	550
26.3. The robot and the human being	555
26.4. Exercises.	559
26.4.1. Movement of a particle on a square-based pyramid	559
26.4.2. Movement of two particles on a square-based pyramid.	561
26.4.3. Movement of two particles on a graph with five vertices	563

238

Chapter 27. Repetitive Draws until the Outcome of a Certain Pattern	565
27.1. Patterns are arrangements of K out of N letters	566
of a block	566
the form of a block	568
in scattered form	570 571
of a block	571
of a block, out of N	574
in scattered form	577
in scattered form	577
27.2.5. Some examples of comparative results for waiting times	579
27.3. Wait for patterns with eventual repetitions of identical letters \ldots 27.3.1. For an alphabet of N letters, we wait for a given pattern	580
in the form of a <i>n</i> -length block	580
27.3.2. Wait for one of two patterns of the same length L	581
27.4. Programming exercises	586
27.4.1. Wait for completely different letters	586
27.4.2. Waiting time for a certain pattern	588
27.4.3. Number of words without two-sided factors	589
Chapter 28. Probability Exercises	597
28.1. The elevator	597
28.1.1. Deal with the case where $P = 2$ floors and the number	
of people N is at least equal to $2 \dots $	597
28.1.2. Determine the law of X , i.e. the probability associated	
with each value of X	598
28.1.3. Average value $E(X)$	599
28.1.4. Direct calculation of $S(K+1, K)$	600
28.1.5. Another way of dealing with the previous question	601
28.2. Matches	601
28.3. The tunnel	602
28.3.1. Dealing with the specific case where $N = 3$	606
28.3.2. Variation with an absorbing boundary and another method	608
28.3.3. Complementary exercise: drunken man's walk on a straight line,	
with resting time	610

xviii Mathematics for Informatics and Computer Science

28.4. Repetitive draws from a box	613
28.4.1. Probability law for the number of draws	615
28.4.2. Extra questions	616
28.4.3. Probability of getting ball number k during the game	617
28.4.4. Probability law associated with the number of balls drawn	617
28.4.5. Complementary exercise: variation of the previous problem	618
28.5. The sect	620
28.5.1. Can the group last forever?	620
28.5.2. Probability law of the size of the tree	621
28.5.3. Average tree size	622
28.5.4. Variance of the variable size	624
28.5.5. Algorithm giving the probability law of	
the organization's lifespan	625
28.6. Surfing the web (or how Google works)	627
PART 3. GRAPHS	637
Part 3. Introduction	639
Chapter 29. Graphs and Routes	643
29.1. First notions on graphs	643
29.1.1. A few properties of graphs	645
29.1.2. Constructing graphs from points	646
29.2. Representing a graph in a program	647
29.2.1. From vertices to edges	649
29.2.2. From edges to vertices	649
29.3. The tree as a specific graph.	649
29.3.1. Definitions and properties	649
29.3.2. Programming exercise: network converging on a point.	652
29.4. Paths from one point to another in a graph.	654
29.4.1. Dealing with an example	654
29.4.2. Exercise: paths on a complete graph, from one vertex to another.	656
Chapter 30. Explorations in Graphs.	661
30.1. The two ways of visiting all the vertices of a connected graph	661
30.2. Visit to all graph nodes from one node, following	001
depth-first traversal.	662
30.3. The pedestrian's route	665
30.4. Depth-first exploration to determine connected components	005
of the graph	669
30.5. Breadth-first traversal.	671
30.5.1. Program.	671

30.5.2. Example: traversal in a square grid	673
30.6. Exercises	676
30.6.1. Searching in a maze	676
30.6.2. Routes in a square grid, with rising shapes without entangling	680
30.6.3. Route of a fluid in a graph	683
30.6.4. Connected graphs with <i>n</i> vertices	683
30.6.5. Bipartite graphs	685
30.7. Returning to a depth-first exploration tree	686
30.7.1. Returning edges in an undirected graph	687
30.7.2. Isthmuses in an undirected graph.	688
30.8. Case of directed graphs	690
30.8.1. Strongly connected components in a directed graph.	690
30.8.2. Transitive closure of a directed graph	693
30.8.3. Orientation of a connected undirected graph to become	
strongly connected	696
30.8.4. The best orientations on a graph	696
30.9. Appendix: constructing the maze (simplified version)	700
Chapter 31. Trees with Numbered Nodes, Cayley's Theorem	
and Prüfer Code	705
31.1. Cayley's theorem	705
31.2. Prüfer code	706
31.2.1. Passage from a tree to its Prüfer code	707
31.2.2. Reverse process	707
31.2.3. Program	709
31.3. Randomly constructed spanning tree	715
31.3.1. Wilson's algorithm	715
31.3.2. Maze and domino tiling	718
Chapter 32. Binary Trees	723
32.1. Number of binary trees with <i>n</i> nodes	725
32.2. The language of binary trees	725
32.3. Algorithm for creation of words from the binary tree language	728
32.4. Triangulation of polygons with numbered vertices and binary trees	729
32.5. Binary tree sort or quicksort	733
v 1	
Chapter 33. Weighted Graphs: Shortest Paths and Minimum	
Spanning Tree	737
33.1. Shortest paths in a graph	737
33.1.1. Dijkstra's algorithm.	738
33.1.2. Floyd's algorithm	741
33.2. Minimum spanning tree	746

33.2.1. Prim's algorithm.	747
33.2.2. Kruskal's algorithm.	749
33.2.3. Comparison of the two algorithms	754
33.2.4. Exercises	754
Chapter 34. Eulerian Paths and Cycles, Spanning Trees of a Graph	759
34.1. Definition of Eulerian cycles and paths	759
34.2. Euler and Königsberg bridges	761
34.2.1. Returning to Königsberg bridges	763
34.2.2. Examples	764
34.2.3. Constructing Eulerian cycles by fusing cycles	767
34.3. Number of Eulerian cycles in a directed graph, link with directed	
spanning trees	768
34.3.1. Number of directed spanning trees	771
34.3.2. Examples	774
34.4. Spanning trees of an undirected graph	776
34.4.1. Example 1: complete graph with <i>p</i> vertices	777
34.4.2. Example 2: tetrahedron	778
Chapter 35. Enumeration of Spanning Trees of an Undirected Graph	779
35.1. Spanning trees of the fan graph	779
35.2. The ladder graph and its spanning trees	782
35.3. Spanning trees in a square network in the form of a grid	784
of the square network	785
35.3.2. Spanning trees program in the case of the square network	786
35.3.3. Passage to the undirected graph, its dual and formula giving the	
number of spanning trees	788
35.4. The two essential types of (undirected) graphs based on squares	789
35.5. The cyclic square graph	791
35.6. Examples of regular graphs.	792
35.6.1. Example 1	792
35.6.2. Example 2: hypercube with n dimensions	793
35.6.3. Example 3: the ladder graph and its variations	793
Chapter 36. Enumeration of Eulerian Paths in Undirected Graphs	799
36.1. Polygon graph with <i>n</i> vertices with double edges	799
36.2. Eulerian paths in graph made up of a frieze of triangles	801
36.3. Algorithm for Eulerian paths and cycles on an undirected graph	804
36.3.1. The arborescence for the paths	804
36.3.2. Program for enumerating Eulerian cycles	805

and the state of the state of the state

36.3.3. Enumeration in the case of multiple edges between vertices	807
36.3.4. Another example: square with double diagonals.	810
36.4. The game of dominos	813
36.4.1. Number of domino chains	813
36.4.2. Algorithms	816
36.5. Congo graphs	820
36.5.1. A simple case: graphs $P(2n, 5)$	822
36.5.2. The first type of Congolese drawings, on $P(n + 1, n)$ graphs,	
with their Eulerian paths	826
36.5.3. The second type of Congolese drawings, on $P(2N, N)$ graphs	826
36.5.4. Case of Eulerian cycles on $P(2N+1, 2N-1)$ graphs	830
36.5.5. Case of $I(2N+1, 2N+1)$ graphs with their Eulerian cycles	832
50.5.5. Case of $1(217 + 1, 217 + 1)$ graphs with their Euclidic Systems	200
Chapter 37. Hamiltonian Paths and Circuits	835
37.1. Presence or absence of Hamiltonian circuits.	836
37.1.1. First examples	836
37.1.2. Hamiltonian circuits on a cube	837
37.1.3. Complete graph and Hamiltonian circuits.	839
37.2. Hamiltonian circuits covering a complete graph	840
37.2.1. Case where the number of vertices is a prime number	0.0
other than two.	840
37.2.2. General case	841
37.3. Complete and antisymmetric directed graph.	843
37.3.1. A few theoretical considerations	843
37.3.2. Experimental verification and algorithms.	848
37.3.3. Complete treatment of case $N = 4$	851
37.4. Bipartite graph and Hamiltonian paths	854
37.5. Knights tour graph on the N×N chessboard	855
$37.5.1$. Case where N is odd \ldots	855
37.5.2. Coordinates of the neighbors of a vertex	855
37.5.3. Hamiltonian cycles program.	856
37.5.4. Another algorithm.	857
37.6. de Bruijn sequences	859
37.6.1. Preparatory example	859
37.6.2. Definition	860
37.6.3. de Bruijn graph	862
37.6.4. Number of Eulerian and Hamiltonian cycles of <i>Gn</i>	865
$57.0.4$. Number of Euleran and Hammonian cycles of $On \dots \dots \dots$	600
APPENDICES	867
Appendix 1. Matrices	869
A1.1. Notion of linear application	869

xxii Mathematics for Informatics and Computer Science

A1.2. Bijective linear application	872
A1.3. Base change	873
A1.4. Product of two matrices	874
A1.5. Inverse matrix	875
A1.6. Eigenvalues and eigenvectors	877
A1.7. Similar matrices	879
A1.8. Exercise	881
A1.9. Eigenvalues of circulant matrices and circular graphs	882
Appendix 2. Determinants and Route Combinatorics.	885
A2.1. Recalling determinants	885
A2.2. Determinants and tilings	887
A2.3. Path sets and determinant	892
A2.3.1. First example: paths without intersection in a square network	892
A2.3.2. Second example: mountain ranges without intersection,	
based on two diagonal lines.	895
A2.3.3. Third example: mountain ranges without intersection based on	
diagonal lines and plateaus. Link with Aztec diamond tilings	896
A2.3.4. Diamond tilings	899
A2.4. The hamburger graph: disjoint cycles	901
A2.4.1. First example: domino tiling of a rectangular checkerboard	
<i>N</i> long, 2 wide	902
A2.4.2. Second example: domino tilings of the Aztec diamond	904
Bibliography	907
Index	911