Mathematics for Informatics and Computer Science

Pierre Audibert

(WILEY

Table of Contents

General Introduction xxiii
Chapter 1. Some Historical Elements 1
1.1. Yi King 1
1.2. Flavor combinations in India 2
1.3. Sand drawings in Africa 3
1.4. Galileo's problem 4
1.5. Pascal's triangle 7
1.6. The combinatorial explosion: Abu Kamil's problem, the palm grove problem and the Sudoku grid 9
1.6.1. Solution to Abu Kamil's problem 11
1.6.2. Palm Grove problem, where $N=4$. 12
1.6.3. Complete Sudoku grids 14
PART 1. COMBINATORICS 17
Part 1. Introduction 19
Chapter 2. Arrangements and Combinations 21
2.1. The three formulae 21
2.2. Calculation of $\mathrm{C}_{\mathrm{n}}{ }^{\mathrm{p}}$, Pascal's triangle and binomial formula. 25
2.3. Exercises 27
2.3.1. Demonstrating formulae 27
2.3.2. Placing rooks on a chessboard 28
2.3.3. Placing pieces on a chessboard 29
2.3.4. Pascal's triangle modulo k. 30
2,3.5. Words classified based on their blocks of letters 31
2.3.6. Diagonals of a polygon 33
2.3.7. Number of times a number is present in a list of numbers 35
2.3.8. Words of length n based on 0 and 1 without any block of 1 s repeated 37
2.3.9. Programming: classification of applications of a set with n elementsin itself following the form of their graph39
2.3.10. Individuals grouped 2×2 42
Chapter 3. Enumerations in Alphabetical Order 43
3.1. Principle of enumeration of words in alphabetical order 43
3.2. Permutations 44
3.3. Writing binary numbers 46
3.3.1. Programming 46
3.3.2. Generalization to expression in some base B 46
3.4. Words in which each letter is less than or equal to the position 47
3.4.1. Number of these words 47
3.4.2. Program 47
3.5. Enumeration of combinations 47
3.6. Combinations with repetitions. 49
3.7. Purchase of P objects out of N types of objects. 49
3.8. Another enumeration of permutations 50
3.9. Complementary exercises 52
3.9.1. Exercise 1: words with different successive letters 52
3.9.2. Exercise 2: repeated purchases with a given sum of money 56
3.10. Return to permutations 58
3.11. Gray code 60
Chapter 4. Enumeration by Tree Structures 63
4.1. Words of length n, based on N letters $1,2,3, \ldots, N$, where each letter is followed by a higher or equal letter 63
4.2. Permutations enumeration 66
4.3. Derangements 67
4.4. The queens problem. 69
4.5. Filling up containers 72
4.6. Stack of coins 76
4.7. Domino tiling a chessboard 79
Chapter 5. Languages, Generating Functions and Recurrences 85
5.1. The language of words based on two letters. 85
5.2. Domino tiling a $2 \times n$ chessboard. 88
5.3. Generating function associated with a sequence 89
5.4. Rational generating function and linear recurrence 91
5.5. Example: routes in a square grid with rising shapes without entanglement 92
5.6. Exercises on recurrences 94
5.6.1. Three types of purchases each day with a sum of N dollars 94
5.6.2. Word building 96
5.7. Examples of languages 98
5.7.1. Language of parts of an element set $\{a, b, c, d, \ldots\}$ 98
5.7.2. Language of parts of a multi-set based on \mathbf{n} elements a, b, c, etc., where these elements can be repeated as much as we want 99
5.7.3. Language of words made from arrangements taken from n distinct and non-repeated letters a, b, c, etc., where these words are shorter than or equal to n 99
5.7.4. Language of words based on an alphabet of n letters 100
5.8. The exponential generating function 101
5.8.1. Exercise 1: words based on three letters a, b and c, with the letter a at least twice. 101
5.8.2. Exercise 2 : sending n people to three countries, with at least one person per country 103
Chapter 6. Routes in a Square Grid 105
6.1. Shortest paths from one point to another 105
6.2. n-length paths using two (perpendicular) directions of the square grid 108
6.3. Paths from O to $B(n, x)$ neither touching nor crossing the horizontal axis and located above it 109
6.4. Number of n-length paths that neither touch nor cross the axis of the adscissae until and including the final point 110
6.5. Number of n-length paths above the horizontal axis that can touch but not cross the horizontal axis 111
6.6. Exercises 112
6.6.1. Exercise 1: show that $C_{2 n}^{n}=\sum_{k=0}^{n}\left(C_{n}^{k}\right)^{2}$ 112
6.6.2. Exercise 2: show that $\sum_{k=0}^{P} C_{N-1+k}^{k}=C_{N+P}^{P}$ 113
6.6.3. Exercise 3: show that $\sum_{k=1}^{n^{\prime}} 2 k C_{2 n^{\prime}}^{n^{\prime}+k}=n^{\prime} C_{2 n^{\prime}}^{n^{\prime}}$ 113
6.6.4. Exercise 4: a geometrico-linguistic method 114
6.6.5. Exercise 5: paths of a given length that never intersect each other and where the four directions are allowed in the square grid 115
Chapter 7. Arrangements and Combinations with Repetitions 119
7.1. Anagrams 119
7.2. Combinations with repetitions 121
7.2.1. Routes in a square grid. 121
7.2.2. Distributing (indiscernible) circulars in personalized letter boxes 121
7.2.3. Choosing I objects out of N categories of object 121
7.2.4. Number of positive or nul integer solutions to the equation $x 0+x 1+\ldots+x n-1=P$ 122
7.3. Exercises 125
7.3.1. Exercise 1 : number of ways of choosing six objects out of three categories, with the corresponding prices 125
7.3.2. Exercise 2 : word counting. 125
7.3.3. Exercise 3: number of words of P characters based on an alphabet of N letters and subject to order constraints 127
7.3.4. Exercise 4: choice of objects out of several categories taking at least one object from each category 128
7.3.5. Exercise 5: choice of P objects out of N categories when the stock is limited 128
7.3.6. Exercise 6: generating functions associated with the number of integer solutions to an equation with n unknowns 129
7.3.7. Exercise 7: number of solutions to the equation $x+y+z=k$, where k is a given natural integer and $0 \leq x \leq y \leq z$ 130
7.3.8. Exercise 8: other applications of the method using generating functions 131
7.3.9. Exercise 9: integer-sided triangles 132
7.3.10. Revision exercise: sending postcards 133
7.4. Algorithms and programs 135
7.4.1. Anagram program 135
7.4.2. Combinations with repetition program 136
Chapter 8. Sieve Formula 137
8.1. Sieve formula on sets 138
8.2. Sieve formula in combinatorics 142
8.3. Examples 142
8.3.1. Example 1: filling up boxes with objects, with at least one box remaining empty 142
8.3.2. Example 2: derangements 144
8.3.3. Example 3: formula giving the Euler number $\varphi(n)$ 145
8.3.4. Example 4: houses to be painted 146
8.3.5. Example 5: multiletter words 148
8.3.6. Example 6: coloring the vertices of a graph 150
8.4. Exercises 153
8.4.1. Exercise 1 : sending nine diplomats, $1,2,3, \ldots, 9$, to three countries A, B, C 153
8.4.2. Exercise 2: painting a room 153
8.4.3. Exercise 3: rooks on a chessboard 155
8.5. Extension of sieve formula 158
8.5.1. Permutations that have k fixed points 159
8.5.2. Permutations with q disjoint cycles that are k long 160
8.5.3. Terminal nodes of trees with n numbered nodes. 161
8.5.4. Revision exercise about a word: intelligent. 163
Chapter 9. Mountain Ranges or Parenthesis Words: Catalan Numbers 165
9.1. Number $c(n)$ of mountain ranges $2 n$ long 166
9.2. Mountains or primitive words 167
9.3. Enumeration of mountain ranges 168
9.4. The language of mountain ranges 169
9.5. Generating function of the $\mathrm{C}_{2 \mathrm{n}}{ }^{\mathrm{n}}$ and Catalan numbers 171
9.6. Left factors of mountain ranges 173
9.6.1. Algorithm for obtaining the numbers of these left factors $a(N, X)$ 175
9.6.2. Calculation following the lines of Catalan's triangle 176
9.6.3. Calculations based on the columns of the Catalan triangle 177
9.6.4. Average value of the height reached by left factors 178
9.6.5. Calculations based on the second bisector of the Catalan triangle 180
9.6.6. Average number of mountains for mountain ranges 183
9.7. Number of peaks of mountain ranges 184
9.8. The Catalan mountain range, its area and height 187
9.8.1. Number of mountain ranges $2 n$ long passing through a given point on the square grid. 187
9.8.2. Sum of the elements of lines in triangle $O O^{\prime} B$ of mountain ranges $2 n$ long. 188
9.8.3. Sum of numbers in triangle $O O^{\prime} B$ 189
9.8.4. Average area of a mountain $2 n$ long 190
9.8.5. Shape of the average mountain range 192
9.8.6. Height of the Catalan mountain range 194
Chapter 10. Other Mountain Ranges 197
10.1. Mountain ranges based on three lines 197
10.2. Words based on three lines $\nabla \nabla$ with as many
rising lines as falling lines 198
10.2.1. Explicit formula $v(n)$ 199
10.2.2. Return to $u(n)$ number of mountain ranges based on three letters a, b, c and a link with $v(n)$ 200
10.3. Example 1: domino tiling of an enlarged Aztec diamond 200
10.4. Example 2: domino tiling of half an Aztec diamond 204
10.4.1. Link between Schröder numbers and Catalan numbers 207
10.4.2. Link with Narayana numbers 207
10.4.3. Another way of programming three-line mountain ranges 208
10.5. Mountain ranges based on three types of lines 210
10.6. Example 3: movement of the king on a chessboard 213
Chapter 11. Some Applications of Catalan Numbers and Parenthesis Words. 215
11.1. The number of ways of placing n chords not intersecting each other on a circle with an even number $2 n$ of points. 215
11.2. Murasaki diagrams and partitions 216
11.3. Path couples with the same ends in a square grid. 218
11.4. Path couples with same starting point and length 220
11.5. Decomposition of words based on two letters as a product of words linked to mountain ranges 222
Chapter 12. Burnside's Formula 227
12.1. Example 1: context in which we obtain the formula 227
12.2. Burnside's formula. 231
12.2.1. Complementary exercise: rotation-type colorings of the vertices of a square 232
12.2.2. Example 2: pawns on a chessboard 232
12,2.3. Example 3: pearl necklaces 237
12.2.4. Example 4: coloring of a stick 239
12.3. Exercises. 239
12.3.1. Coloring the vertices of a square 239
12.3.2. Necklaces with stones in several colors 241
12.3.3. Identical balls in identical boxes 244
12.3.4. Tiling an Aztec diamond using l-squares 244
12.3.5. The 4×4 Sudoku: search for fundamentally different symmetry-type girls 246
Chapter 13. Matrices and Circulation on a Graph. 253
13.1. Number of paths of a given length on a complete or a regular graph 254
13.2. Number of paths and matrix powers 255
13.2.1. Example $1: n$-length words in an alphabet of three letters $1,2,3$, with prohibition of blocks 11 and 23 257
13.2.2. Simplification of the calculation 259
13.2.3. Example 2 : n-length words based on three letters $1,2,3$ with blocks 11, 22 and 33 prohibited 261
13.3. Link between cyclic words and closed paths in an oriented graph 262
13.4. Examples 263
13.4.1. Dominos on a chessboard 263
13.4.2. Words with a dependency link between two successive letters of words 265
13.4.3. Routes on a graded segment 266
13.4.4. Molecular chain 270
Chapter 14. Parts and Partitions of a Set 275
14.1. Parts of a set. 275
14.1.1. Program getting all parts of a set 275
14.1.2. Exercises 277
14.2. Partitions of a n-object set 281
14.2.1. Definition 281
14.2.2. A second kind of Stirling numbers, and partitions of a n-element set in k parts 281
14.2.3. Number of partitions of a set and Bell numbers 283
14.2.4. Enumeration algorithm for all partitions of a set 285
14.2.5. Exercise: Sterling numbers modulo 2 286
Chapter 15. Partitions of a Number 289
15.1. Enumeration algorithm 289
15.2. Euler formula 290
15.3. Exercises. 292
15.3.1. Exercise 1: partitions of a number n in k distinct elements 292
15.3.2. Exercise 2: ordered partitions 296
15.3.3. Exercise 3: sum of the products of all the ordered partitions of a number 297
15.3.4. Exercise 4: partitions of a number in completely distinct parts 298
15.3.5. Exercise 5: partitions and routes in a square grid 299
15.3.6. Exercise 6: Ferrers graphs 302
Chapter 16. Flags 305
16.1. Checkered flags 305
16.2. Flags with vertical stripes 306
Chapter 17. Walls and Stacks 315
17.1. Brick walls 315
17.2. Walls of bricks made from continuous horizontal rows 316
17.2.1. Algorithm for classifying various types of walls 317
17.2.2. Possible positions of one row above another 317
17.2.3. Coordinates of bricks 318
17.3. Heaps. 319
17.4. Stacks of disks 322
17.5. Stacks of disks with continuous rows 324
17.6. Horizontally connected polyominos 326
Chapter 18. Tiling of Rectangular Surfaces using Simple Shapes 331
18.1. Tiling of a $2 \times n$ chessboard using dominos 331
18.1.1. First algorithm for constructing tilings 332
18.1.2. Second construction algorithm 333
18.2. Other tilings of a chessboard $2 \times n$ squares long 334
18.2.1. With squares and horizontal dominos 334
18.2.2. With squares and horizontal or vertical dominos 335
18.2.3. With dominos and l-squares we can turn and reflect 335
18.2.4. With squares, l-squares and dominos 336
18.3. Tilings of a $3 \times n$ chessboard using dominos 337
18.4. Tilings of a $4 \times n$ chessboard with dominos 339
18.5. Domino tilings of a rectangle 340
Chapter 19. Permutations 345
19.1. Definition and properties 345
19.2. Decomposition of a permutation as a product of disjoint cycles 347
19.2.1. Particular cases of permutations defined by their decomposition in cycles 349
19.2.2. Number of permutations of n elements with k cycles: Stirling numbers of the first kind 352
19.2.3. Type of permutation 353
19.3. Inversions in a permutation. 354
19.3.1. Generating function of the number of inversions 356
19.3.2. Signature of a permutation: odd and even permutations 357
19.4. Conjugated permutations 359
19.5. Generation of permutations. 360
19.5.1. The symmetrical group S_{n} is generated by the transpositions $(i j)$. 361
19.5.2. S_{n} is generated by transpositions of adjacent elements of the form $(i, i+1)$ 362
19.5.3. S_{n} is generated by transpositions (01) (02) ... (0n-1) 362
19.5.4. S_{n} is generated by cycles (01) and (0123 $\ldots n-1$) 363
19.6. Properties of the alternating group A_{n}. 363
19.6.1. A_{n} is generated by cycles three units long: ($i j k$). 363
19.6.2. A_{n} is generated by $n-2$ cycles (01 k) 363
19.6.3. For $n>3, A_{n}$ is generated by the cycle chain three units long, of the form $(012)(234)(456) \ldots(n-3 n-2 n-1)$ 364
19.7. Applications of these properties 365
19.7.1. Card shuffling 365
19.7.2. Taquin game in a n by p (n and $p>1$) rectangle. 368
19.7.3. Cyclic shifts in a rectangle. 371
19.7.4. Exchanges of lines and columns in a square 375
19.8. Exercises on permutations 376
19.8.1. Creating a permutation at random 376
19.8.2. Number of permutations $\left(\begin{array}{ccccc}0 & 1 & 2 & \ldots & n-1 \\ a(0) & a(1) & a(2) & \ldots & a(n-1)\end{array}\right)$
with n elements $0,1,2, \ldots, n-1$, such that $|a(i)-i|=0$ or 1 377
19.8.3. Permutations with $a(i)-i= \pm 1$ or ± 2 379
19.8.4. Permutations with n elements $0,1,2, \ldots, n-1$ without two consecutive elements 379
19.8.5. Permutations with n elements $0,1,2, \ldots, n-1$, made up of a single cycle in which no two consecutive elements modulo n are found 381
19.8.6. Involute permutations 383
19.8.7. Increasing subsequences in a permutation 384
19.8.8. Riffle shuffling of type O and I for N cards when N is a power of 2 386
Part 2. Probability 387
Part 2. Introduction 389
Chapter 20. Reminders about Discrete Probabilities 395
20.1. And/or in probability theory 396
20.2. Examples 398
20.2.1. The Chevalier de Mere problem 398
20.2.2. From combinatorics to probabilities 399
20.2.3. From combinatorics of weighted words to probabilities 400
20.2.4. Drawing a parcel of objects from a box 401
20.2.5. Hypergeometric law 401
20.2.6. Draws with replacement in a box 402
20.2.7. Numbered balls in a box and the smallest number obtained during draws 403
20.2.8. Wait for the first double heads in a repeated game of heads or tails 404
20.2.9. Succession of random cuts made in a game of cards 405
20.2.10. Waiting time for initial success 407
20.2.11. Smallest number obtained during successive draws 409
20.2.12. The pool problem 411
20.3. Total probability formula 412
20.3.1. Classic example 412
20.3.2. The formula 413
20.3.3. Examples 413
20.4. Random variable X, law of X, expectation and variance 418
20.4.1. Average value of X 418
20.4.2. Variance and standard deviation 418
20.4.3. Example. 419
20.5. Some classic laws 420
20.5.1. Bernoulli's law 420
20.5.2. Geometric law 420
20.5.3. Binomial law. 421
20.6. Exercises. 422
20.6.1. Exercise 1: throwing balls in boxes 422
20.6.2. Exercise 2 : series of repetitive tries 423
20.6.3. Exercise 3 : filling two boxes 425
Chapter 21. Chance and the Computer. 427
21.1. Random number generators 428
21.2. Dice throwing and the law of large numbers 429
21.3. Monte Carlo methods for getting the approximate value of the number π 430
21.4. Average value of a random variable X, variance and standard deviation 432
21.5. Computer calculation of probabilities, as well as expectation and variance, in the binomial law example 433
21.6. Limits of the computer 437
21.7. Exercises. 439
21.7.1. Exercise 1 : throwing balls in boxes 439
21.7.2. Exercise 2; boys and girls 439
21.7.3. Exercise 3: conditional probability 441
21.8. Appendix: chi-squared law 443
21.8.1. Examples of the test for uniform distribution. 443
21.8.2. Chi-squared law and its link with Poisson distribution 445
Chapter 22. Discrete and Continuous 447
22.1. Uniform law. 448
22.1.1. Programming. 448
22.1.2. Example 1 449
22.1.3. Example 2: two people meeting 450
22.2. Density function for a continuous random variable and distribution function 451
22.3. Normal law 452
22.4. Exponential law and its link with uniform law 454
22.4.1. An application: geometric law using exponential law. 456
22.4.2. Program for getting the geometric law with parameter p 457
22.5. Normal law as an approximation of binomial law 458
22.6. Central limit theorem: from uniform law to normal law 460
22.7. Appendix: the distribution function and its inversion - application to binomial law $B(n, p)$. 465
22.7.1. Program 465
22.7.2. The inverse function 467
22.7.3. Program causing us to move from distribution function to probability law 468
Chapter 23. Generating Function Associated with a Discrete Random Variable in a Game 469
23.1. Generating function: definition and properties 469
23.2. Generating functions of some classic laws. 470
23.2.1. Bernoulli's law 470
23.2.2. Geometric law 470
23.2.3. Binomial law 473
23.2.4. Poisson distribution 475
23.3. Exercises 476
23.3.1. Exercise 1: waiting time for double heads in a game of heads or tails 476
23.3.2. Exercise 2 : in a repeated game of heads or tails, what is the parity of the number of heads? 481
23.3.3. Exercise 3: draws until a certain threshold is exceeded 482
23.3.4. Exercise 4: Pascal's law 487
23.3.5. Exercise 5: balls of two colors in a box 488
23.3.6. Exercise 6: throws of N dice until each gives the number 1 492
Chapter 24. Graphs and Matrices for Dealing with Probability Problems. 497
24.1. First example: counting of words based on three letters 497
24.2. Generating functions and determinants 499
24.3. Examples 500
24.3.1. Exercise 1 : waiting time for double heads in a game of heads or tails 500
24.3.2. Draws from three boxes 503
24.3.3. Alternate draws from two boxes 505
24.3.4. Successive draws from one box to the next 506
Chapter 25. Repeated Games of Heads or Tails 509
25.1. Paths on a square grid 509
25.2. Probability of getting a certain number of wins after n equiprobable tosses 511
25.2.1. Probability $p(n, x)$ of getting winnings of x at the end of n moves 512
25.2.2. Standard deviation in relation to a starting point 512
25.2.3. Probability $\rho\left(2 n^{\prime}\right)$ of a return to the origin at stage $n=2 n^{\prime}$ 513
25.3. Probabilities of certain routes over n moves 514
25.4. Complementary exercises. 516
25.4.1. Last visit to the origin 516
25.4.2. Number of winnings sign changes throughout the game 517
25.4.3. Probability of staying on the positive winnings side for a certain amount of time during the $N=2 n$ equiprobable tosses. 519
25.4.4. Longest range of winnings with constant sign 520
25.5. The gambler's ruin problem 521
25.5.1. Probability of ruin. 522
25.5.2. Average duration of the game 524
25.5.3. Results and program 525
25.5.4. Exercises 526
25.5.5. Temperature equilibrium and random walk. 530
Chapter 26. Random Routes on a Graph. 535
26.1. Movement of a particle on a polygon or graduated segment 535
26.1.1. Average duration of routes between two points 535
26.1.2. Paths of a given length on a polygon. 542
26.1.3. Particle circulating on a pentagon: time required using one side or the other to get to the end 546
26.2. Movement on a polyhedron 547
26.2.1. Case of the regular polyhedron 547
26.2.2. Circulation on a cube with any dimensions 550
26.3. The robot and the human being 555
26.4. Exercises 559
26.4.1. Movement of a particle on a square-based pyramid 559
26.4.2. Movement of two particles on a square-based pyramid. 561
26.4.3. Movement of two particles on a graph with five vertices 563
Chapter 27. Repetitive Draws until the Outcome of a Certain Pattern 565
27.1. Patterns are arrangements of K out of N letters 566
27.1.1. Wait for a given arrangement of the K letters in the form of a block 566
27.1.2. Wait for a given cyclic arrangement of K letters in the form of a block 568
27.1.3. The pattern is a given arrangement of K out of N letters in scattered form 570
27.2. Patterns are combinations of K letters drawn from N letters 571
27.2.1. Wait for the outcome of a part made of K numbers in the form of a block 571
27.2.2. Wait for the outcome of any part of K numbers in the form of a block, out of N 574
27.2.3. Wait for the outcome of a part with K given numbers out of N in scattered form 577
27.2.4. Wait for the outcome of any part of K numbers out of N, in scattered form 577
27.2.5. Some examples of comparative results for waiting times 579
27.3. Wait for patterns with eventual repetitions of identical letters 580
27.3.1. For an alphabet of N letters, we wait for a given pattern in the form of a n-length block 580
27.3.2. Wait for one of two patterns of the same length L 581
27.4. Programming exercises 586
27.4.1. Wait for completely different letters 586
27.4.2. Waiting time for a certain pattern 588
27.4.3. Number of words without two-sided factors 589
Chapter 28. Probability Exercises 597
28.1. The elevator. 597
28.1.1. Deal with the case where $P=2$ floors and the number of people N is at least equal to 2 597
28.1.2. Determine the law of X, i.e. the probability associated with each value of X 598
28.1.3. Average value $E(X)$ 599
28.1.4. Direct calculation of $S(K+1, K)$ 600
28.1.5. Another way of dealing with the previous question 601
28.2. Matches 601
28.3. The tunnel 602
28.3.1. Dealing with the specific case where $N=3$ 606
28.3.2. Variation with an absorbing boundary and another method 608
28.3.3. Complementary exercise: drunken man's walk on a straight line, with resting time 610
28.4. Repetitive draws from a box 613
28.4.1. Probability law for the number of draws 615
28.4.2. Extra questions 616
28.4.3. Probability of getting ball number k during the game 617
28.4.4. Probability law associated with the number of balls drawn 617
28.4.5. Complementary exercise: variation of the previous problem 618
28.5. The sect 620
28.5.1. Can the group last forever? 620
28.5.2. Probability law of the size of the tree 621
28.5.3. Average tree size 622
28.5.4. Variance of the variable size 624
28.5.5. Algorithm giving the probability law of the organization's lifespan 625
28.6. Surfing the web (or how Google works) 627
Part 3. Graphs 637
Part 3. Introduction 639
Chapter 29. Graphs and Routes 643
29.1. First notions on graphs 643
29.1.1. A few properties of graphs. 645
29.1.2. Constructing graphs from points 646
29.2. Representing a graph in a program 647
29.2.1. From vertices to edges 649
29.2.2. From edges to vertices 649
29.3. The tree as a specific graph. 649
29.3.1. Definitions and properties 649
29.3.2. Programming exercise: network converging on a point. 652
29.4. Paths from one point to another in a graph. 654
29.4.1. Dealing with an example 654
29.4.2. Exercise: paths on a complete graph, from one vertex to another. 656
Chapter 30. Explorations in Graphs. 661
30.1. The two ways of visiting all the vertices of a connected graph 661
30.2. Visit to all graph nodes from one node, following depth-first traversal 662
30.3. The pedestrian's route 665
30.4. Depth-first exploration to determine connected components of the graph 669
30.5. Breadth-first traversal 671
30.5.1. Program 671
30.5.2. Example: traversal in a square grid 673
30.6. Exercises. 676
30.6.1. Searching in a maze. 676
30.6.2. Routes in a square grid, with rising shapes without entangling 680
30.6.3. Route of a fluid in a graph 683
30.6.4. Connected graphs with n vertices. 683
30.6.5. Bipartite graphs 685
30.7. Returning to a depth-first exploration tree 686
30.7.1. Returning edges in an undirected graph 687
30.7.2. Isthmuses in an undirected graph 688
30.8. Case of directed graphs 690
30.8.1. Strongly connected components in a directed graph. 690
30.8.2. Transitive closure of a directed graph 693
30.8.3. Orientation of a connected undirected graph to become strongly connected 696
30.8.4. The best orientations on a graph 696
30.9. Appendix: constructing the maze (simplified version) 700
Chapter 31. Trees with Numbered Nodes, Cayley's Theorem and Prüfer Code 705
31.1. Cayley's theorem. 705
31.2. Prüfer code 706
31.2.1. Passage from a tree to its Prüfer code 707
31.2.2. Reverse process 707
31.2.3. Program. 709
31.3. Randomly constructed spanning tree 715
31.3.1. Wilson's algorithm 715
31.3.2. Maze and domino tiling 718
Chapter 32. Binary Trees 723
32.1. Number of binary trees with n nodes 725
32.2. The language of binary trees 725
32.3. Algorithm for creation of words from the binary tree language 728
32.4. Triangulation of polygons with numbered vertices and binary trees. 729
32.5. Binary tree sort or quicksort 733
Chapter 33. Weighted Graphs: Shortest Paths and Minimum Spanning Tree 737
33.1. Shortest paths in a graph 737
33.1.1. Dijkstra's algorithm. 738
33.1.2. Floyd's algorithm 741
33.2. Minimum spanning tree 746
33.2.1. Prim's algorithm 747
33.2.2. Kruskal's algorithm 749
33.2.3. Comparison of the two algorithms 754
33.2.4. Exercises 754
Chapter 34. Eulerian Paths and Cycles, Spanning Trees of a Graph 759
34.1. Definition of Eulerian cycles and paths 759
34.2. Euler and Königsberg bridges 761
34.2.1. Returning to Königsberg bridges 763
34.2.2. Examples 764
34.2.3. Constructing Eulerian cycles by fusing cycles 767
34.3. Number of Eulerian cycles in a directed graph, link with directed spanning trees 768
34.3.1. Number of directed spanning trees 771
34.3.2. Examples 774
34.4. Spanning trees of an undirected graph 776
34.4.1. Example 1: complete graph with p vertices 777
34.4.2. Example 2; tetrahedron 778
Chapter 35. Enumeration of Spanning Trees of an Undirected Graph 779
35.1. Spanning trees of the fan graph 779
35.2. The ladder graph and its spanning trees 782
35.3. Spanning trees in a square network in the form of a grid 784
35.3.1. Experimental enumeration of spanning trees of the square network 785
35.3.2. Spanning trees program in the case of the square network 786
35.3.3. Passage to the undirected graph, its dual and formula giving the number of spanning trees 788
35.4. The two essential types of (undirected) graphs based on squares 789
35.5. The cyclic square graph 791
35.6. Examples of regular graphs 792
35.6.1. Example 1 792
35.6.2. Example 2 : hypercube with n dimensions 793
35.6.3. Example 3: the ladder graph and its variations 793
Chapter 36. Enumeration of Eulerian Paths in Undirected Graphs 799
36.1. Polygon graph with n vertices with double edges. 799
36.2. Eulerian paths in graph made up of a frieze of triangles 801
36.3. Algorithm for Eulerian paths and cycles on an undirected graph 804
36.3.1. The arborescence for the paths 804
36.3.2. Program for enumerating Eulerian cycles 805
36.3.3. Enumeration in the case of multiple edges between vertices. 807
36.3.4. Another example; square with double diagonals 810
36.4. The game of dominos 813
36.4.1. Number of domino chains 813
36.4.2 Algorithms 816
36.5. Congo graphs 820
36.5.1. A simple case: graphs $P(2 n, 5)$ 822
36.5.2. The first type of Congolese drawings, on $P(n+1, n)$ graphs, with their Eulerian paths 826
36.5.3. The second type of Congolese drawings, on $P(2 N, N)$ graphs 826
36.5.4. Case of Eulerian cycles on $P(2 N+1,2 N-1)$ graphs 830
36.5.5. Case of $I(2 N+1,2 N+1)$ graphs with their Eulerian cycles 832
Chapter 37. Hamiltonian Paths and Circuits 835
37.1. Presence or absence of Hamiltonian circuits. 836
37.1.1. First examples 836
37.1.2. Hamiltonian circuits on a cube 837
37.1.3. Complete graph and Hamiltonian circuits 839
37.2. Hamiltonian circuits covering a complete graph 840
37.2.1. Case where the number of vertices is a prime number other than two 840
37.2.2. General case 841
37.3. Complete and antisymmetric directed graph. 843
37.3.1. A few theoretical considerations 843
37.3.2. Experimental verification and algorithms 848
37.3.3. Complete treatment of case $N=4$ 851
37.4. Bipartite graph and Hamiltonian paths 854
37.5. Knights tour graph on the $N \times N$ chessboard 855
37.5.1. Case where N is odd 855
37.5.2. Coordinates of the neighbors of a vertex 855
37.5.3. Hamiltonian cycles program. 856
37.5.4. Another algorithm 857
37.6. de Bruijn sequences 859
37.6.1. Preparatory example 859
37.6.2. Definition 860
37.6.3. de Bruijn graph 862
37.6.4. Number of Eulerian and Hamiltonian cycles of Gn 865
APPENDICES 867
Appendix 1. Matrices 869
A1.1. Notion of linear application 869
A1.2. Bijective linear application 872
A1.3. Base change 873
A1.4. Product of two matrices 874
A1.5. Inverse matrix 875
A1.6. Eigenvalues and eigenvectors 877
A1.7. Similar matrices 879
A1.8. Exercise 881
A1.9. Eigenvalues of circulant matrices and circular graphs. 882
Appendix 2. Determinants and Route Combinatorics. 885
A2.1. Recalling determinants 885
A2.2. Determinants and tilings 887
A2.3. Path sets and determinant 892
A2.3.1. First example: paths without intersection in a square network 892
A2.3.2. Second example: mountain ranges without intersection, based on two diagonal lines 895
A2.3.3. Third example: mountain ranges without intersection based on diagonal lines and plateaus. Link with Aztec diamond tilings 896
A2.3.4. Diamond tilings 899
A2.4. The hamburger graph: disjoint cycles 901
A2.4.1. First example: domino tiling of a rectangular checkerboard N long, 2 wide. 902
A2.4.2. Second example: domino tilings of the Aztec diamond 904
Bibliography 907
Index 911

