DISCRETE MATHEMATICS FOR COMPUTER SCIENTISTS

Clifford Stein Columbia University

Robert L. Drysdale Dartmouth College

Kenneth Bogart

TECHNISCHE INFORMATIONSBIBLIOTHEK

UNIVERSITÄTSBIBLIOTHEK HANNOVER

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Contents

List of Theorems, Lemmas, and Corollaries		19
Preface		21
CHAPTER	1 Counting	31
1.1	Basic Counting	31
	The Sum Principle	31
	Abstraction	33
	Summing Consecutive Integers	33
	The Product Principle	34
	Two-Element Subsets	36
	Important Concepts, Formulas, and Theorems	37
	Problems	38
1.2	Counting Lists, Permutations, and Subsets	40
	Using the Sum and Product Principles	40
	Lists and Functions	42
	The Bijection Principle	44
	k-Element Permutations of a Set	45
	Counting Subsets of a Set	46
	Important Concepts, Formulas, and Theorems	48
	Problems	50
1.3	Binomial Coefficients	52
	Pascal's Triangle	52
	A Proof Using the Sum Principle	54
	The Binomial Theorem	56
	Labeling and Trinomial Coefficients	58
	Important Concepts, Formulas, and Theorems	59
	Problems	60 9

10 Contents

1.4	Relations	62
	What Is a Relation?	62
	Functions as Relations	63
	Properties of Relations	63
	Equivalence Relations	66
	Partial and Total Orders	69
	Important Concepts, Formulas, and Theorems	71
	Problems	72
1.5	Using Equivalence Relations in Counting	73
	The Symmetry Principle	73
	Equivalence Relations	75
	The Quotient Principle	76
	Equivalence Class Counting	76
	Multisets	78
	The Bookcase Arrangement Problem	80
	The Number of k-Element Multisets	
	of an <i>n</i> -Element Set	81
	Using the Quotient Principle to Explain a Quotient	82
	Important Concepts, Formulas, and Theorems	83
	Problems	84
CHAPTER	2 Cryptography and Number Theory	89
2.1	Cryptography and Modular Arithmetic	89
	Introduction to Cryptography	89
	Private-Key Cryptography	90
	Public-Key Cryptosystems	93
	Arithmetic Modulo <i>n</i>	95
	Cryptography Using Addition mod n	98
	Cryptography Using Multiplication mod n	99
	Important Concepts, Formulas, and Theorems	101
	Problems	102

2.2	Inverses and Greatest Common Divisors	105
	Solutions to Equations and Inverses mod <i>n</i>	105
	Inverses mod n	106
	Converting Modular Equations to Normal Equations	109
	Greatest Common Divisors	110
	Euclid's Division Theorem	111
	Euclid's GCD Algorithm	114
	Extended GCD Algorithm	115
	Computing Inverses	118
	Important Concepts, Formulas, and Theorems	119
	Problems	120
2.3	The RSA Cryptosystem	123
	Exponentiation mod <i>n</i>	123
	The Rules of Exponents	123
	Fermat's Little Theorem	126
	The RSA Cryptosystem	127
	The Chinese Remainder Theorem	131
	Important Concepts, Formulas, and Theorems	132
	Problems	134
2.4	Details of the RSA Cryptosystem	136
	Practical Aspects of Exponentiation mod n	136
	How Long Does It Take to Use the RSA Algorithm?	139
	How Hard Is Factoring?	140
	Finding Large Primes	140
	Important Concepts, Formulas, and Theorems	143
	Problems	144
CHAPTER	3 Reflections on Logic and Proof	147
3.1	Equivalence and Implication	147
	Equivalence of Statements	147
	Truth Tables	150
	DeMorgan's Laws	153

	Implication	155
	If and Only If	156
	Important Concepts, Formulas, and Theorems	159
	Problems	161
3.2	Variables and Quantifiers	163
	Variables and Universes	163
	Quantifiers	164
	Standard Notation for Quantification	166
	Statements about Variables	168
	Rewriting Statements to Encompass Larger Universes	168
	Proving Quantified Statements True or False	169
	Negation of Quantified Statements	170
	Implicit Quantification	173
	Proof of Quantified Statements	174
	Important Concepts, Formulas, and Theorems	175
	Problems	177
3.3	Inference	179
	Direct Inference (Modus Ponens) and Proofs	179
	Rules of Inference for Direct Proofs	181
	Contrapositive Rule of Inference	183
	Proof by Contradiction	185
	Important Concepts, Formulas, and Theorems	188
	Problems	189
CUANTEN	I Turketion Decursion	
CHAPTER	4 Induction, Recursion, and Recurrences	191
4.1	Mathematical Induction	191
	Smallest Counterexamples	191
	The Principle of Mathematical Induction	195
	Strong Induction	199
	Induction in General	201
	A Recursive View of Induction	203

	Structural Induction	206
	Important Concepts, Formulas, and Theorems	208
	Problems	210
4.2	Recursion, Recurrences, and Induction	213
	Recursion	213
	Examples of First-Order Linear Recurrences	215
	Iterating a Recurrence	217
	Geometric Series	218
	First-Order Linear Recurrences	221
	Important Concepts, Formulas, and Theorems	225
	Problems	227
4.3	Growth Rates of Solutions to Recurrences	228
	Divide and Conquer Algorithms	228
	Recursion Trees	231
	Three Different Behaviors	239
	Important Concepts, Formulas, and Theorems	240
	Problems	242
4.4	The Master Theorem	244
	Master Theorem	244
	Solving More General Kinds of Recurrences	247
	Extending the Master Theorem	248
	Important Concepts, Formulas, and Theorems	250
	Problems	251
4.5	More General Kinds of Recurrences	252
	Recurrence Inequalities	252
	The Master Theorem for Inequalities	253
	A Wrinkle with Induction	255
	Further Wrinkles in Induction Proofs	257
	Dealing with Functions Other Than <i>n^c</i>	260
	Important Concepts, Formulas, and Theorems	262
	Problems	263

14 Contents

4.6	Recurrences and Selection	265
	The Idea of Selection	265
	A Recursive Selection Algorithm	266
	Selection without Knowing the Median in Advance	267
	An Algorithm to Find an Element in the Middle Half	269
	An Analysis of the Revised Selection Algorithm	272
	Uneven Divisions	274
	Important Concepts, Formulas, and Theorems	276
	Problems	277
CHAPTER	5 Probability	279
5.1	Introduction to Probability	279
	Why Study Probability?	279
	Some Examples of Probability Computations	282
	Complementary Probabilities	283
	Probability and Hashing	284
	The Uniform Probability Distribution	286
	Important Concepts, Formulas, and Theorems	289
	Problems	290
5.2	Unions and Intersections	292
	The Probability of a Union of Events	292
	Principle of Inclusion and Exclusion for Probability	295
	The Principle of Inclusion and Exclusion for Counting	301
	Important Concepts, Formulas, and Theorems	303
	Problems	304
5.3	Conditional Probability and Independence	306
	Conditional Probability	306
	Bayes' Theorem	310
	Independence	310
	Independent Trials Processes	312
	Tree Diagrams	314
	Primality Testing	318

	Important Concepts, Formulas, and Theorems	319
	Problems	320
5.4	Random Variables	322
	What Are Random Variables?	322
	Binomial Probabilities	323
	A Taste of Generating Functions	325
	Expected Value	326
	Expected Values of Sums and Numerical Multiples	329
	Indicator Random Variables	332
	The Number of Trials until the First Success	334
	Important Concepts, Formulas, and Theorems	336
	Problems	337
5.5	Probability Calculations in Hashing	340
	Expected Number of Items per Location	340
	Expected Number of Empty Locations	341
	Expected Number of Collisions	342
	Expected Maximum Number of Elements	
	in a Location of a Hash Table	345
	Important Concepts, Formulas, and Theorems	350
	Problems	351
5.6	Conditional Expectations, Recurrences,	
	and Algorithms	355
	When Running Times Depend on More than Size	
	of Inputs	355
	Conditional Expected Values	357
	Randomized Algorithms	359
	Selection Revisited	361
	QuickSort	363
	A More Careful Analysis of RandomSelect	366
	Important Concepts, Formulas, and Theorems	369
	Problems	370

5.7	Probability Distributions and Variance	373
	Distributions of Random Variables	373
	Variance	376
	Important Concepts, Formulas, and Theorems	384
	Problems	385
CHAPTER	6 Graphs	389
6.1	Graphs	389
	The Degree of a Vertex	393
	Connectivity	395
	Cycles	397
	Trees	398
	Other Properties of Trees	398
	Important Concepts, Formulas, and Theorems	401
	Problems	403
6.2	Spanning Trees and Rooted Trees	405
	Spanning Trees	405
	Breadth-First Search	407
	Rooted Trees	412
	Important Concepts, Formulas, and Theorems	416
	Problems	417
6.3	Eulerian and Hamiltonian Graphs	419
	Eulerian Tours and Trails	419
	Finding Eulerian Tours	424
	Hamiltonian Paths and Cycles	425
	NP-Complete Problems	431
	Proving That Problems Are NP-Complete	433
	Important Concepts, Formulas, and Theorems	436
	Problems	437
6.4	Matching Theory	440
	The Idea of a Matching	440
	Making Matchings Bigger	444

	Matching in Bipartite Graphs	447
	Searching for Augmenting Paths in Bipartite Graphs	447
	The Augmentation-Cover Algorithm	450
	Efficient Algorithms	456
	Important Concepts, Formulas, and Theorems	457
	Problems	458
6.5	Coloring and Planarity	460
	The Idea of Coloring	460
	Interval Graphs	463
	Planarity	465
	The Faces of a Planar Drawing	467
	The Five-Color Theorem	471
	Important Concepts, Formulas, and Theorems	474
	Problems	475
APPENDIX A Derivation of the More General		
Master Theorem		479
	More General Recurrences	479
	Recurrences for General <i>n</i>	481
	Removing Floors and Ceilings	482
	Floors and Ceilings in the Stronger Version	
	of the Master Theorem	483
	Proofs of Theorems	483
	Important Concepts, Formulas, and Theorems	487
	Problems	488
APPENDIX	B Answers and Hints to Selected Problems	491
Bibliograp	hy	507
Index		509

- 51-57E