

Power-Aware Online File Allocation in Dynamic Networks

Dissertation

by

Jan Mehler

Faculty of Computer Science, Electrical Engineering and Mathematics Department of Computer Science and Heinz Nixdorf Institute University of Paderborn, Germany

December 2010

Contents

1	Intro	oduction		1
	1.1	The file allocation problem in s	tatic networks	3
	1.2	Competitive analysis		3
	1.3	Dynamic networks		5
	1.4			
	1.5	Our contribution	••••••	10
2	Lim	nitations of Extension to Dynar		13
	2.1	Our model		13
	2.2	Lower bound		14
	2.3	Conclusion		16
3	File Allocation with Step Costs			
	3.1	File allocation in a dynamic sta	r network	19
	,	3.1.1 Our model		19
		3.1.2 Demand-driven algorit	hms	21
		3.1.2.1 Lower bound		21
		3.1.2.2 Algorithm For	LLOW	23
		3.1.2.3 Algorithm Co	UNT	26
		3.1.2.4 Algorithm RA	NDOMIZEDFOLLOW	33
		3.1.3 Lower bound for non-d	emand-driven algorithms	. 37
	3.2	File allocation in a dynamic tre	e network	. 40
		3.2.1 Our model		40
		3.2.2 Algorithm Randomizer	DTREE	. 42
	33	Conclusion and open problem	8	51

4	Simulation Based Evaluation of File Allocation with Step Costs						
	4.1	Evaluated file allocation algorithms	56				
	4.2	Simulation environment	58				
	4.3	Mobility model	60				
	4.4	Experiments	62				
	4.5	Results	63				
	4.6	Conclusion	70				
5	File Leasing						
	5.1	Our model	74				
	5.2	Lower bound	77				
	5.3	Algorithms	79				
	5.4	Conclusion and open problems	84				
Bi	Bibliography						