
REST API Design Rulebook

Mark Masse

O'REILLY*
Beijing • Cambridge • Farnham • Koln • Sebastopol • Tokyo



Table of Contents

Preface ix

1. Introduction 1

Hello World Wide Web 1

Web Architecture 2

Client-Server 3

Uniform Interface 3

Layered System 4

Cache 4

Stateless 4

Code-On-Demand 4

Web Standards 5

REST 5

REST APIs 5

REST API Design 6

Rules 6

WRML 7

Recap 7

2. Identifier Design with URIs 11

URIs 11

URI Format 11

Rule: Forward slash separator (/) must be used to indicate a hierarchical

relationship 12

Rule: A trailing forward slash (/) should not be included in URIs 12

Rule: Hyphens (-) should be used to improve the readability of URIs 12

Rule: Underscores (_) should not be used in URIs 12

Rule: Lowercase letters should be preferred in URI paths 13

Rule: File extensions should not be included in URIs 13

URI Authority Design 14

Rule: Consistent subdomain names should be used for your APIs 14

Hi



Rule: Consistent subdomain names should be used for your client de¬

veloper portal 14

Resource Modeling 14

Resource Archetypes 15

Document 15

Collection 15

Store 16

Controller 16

URI Path Design 16

Rule: A singular noun should be used for document names 17

Rule: A plural noun should be used for collection names 17

Rule: A plural noun should be used for store names 17

Rule: A verb or verb phrase should be used for controller names 17

Rule: Variable path segments may be substituted with identity-based
values 18

Rule: CRUD function names should not be used in URIs 18

URI Query Design 19

Rule: The query component of a URI may be used to filter collections

or stores 19

Rule: The query component of a URI should be used to paginate col¬

lection or store results 20

Recap 20

3. Interaction Design with HTTP 23

HTTP/1.1 23

Request Methods 23

Rule: GET and POST must not be used to tunnel other request methods 24

Rule: GET must be used to retrieve a representation of a resource 24

Rule: HEAD should be used to retrieve response headers 25

Rule: PUT must be used to both insert and update a stored resource 25

Rule: PUT must be used to update mutable resources 26

Rule: POST must be used to create a new resource in a collection 26

Rule: POST must be used to execute controllers 26

Rule: DELETE must be used to remove a resource from its parent 27

Rule: OPTIONS should be used to retrieve metadata that describes a

resource's available interactions 27

Response Status Codes 28

Rule: 200 ("OK") should be used to indicate nonspecific success 28

Rule: 200 ("OK") must not be used to communicate errors in the re¬

sponse body 28

Rule: 201 ("Created") must be used to indicate successful resource cre¬

ation 28

iv | Table of Contents



Rule: 202 ("Accepted") must be used to indicate successful start of an

asynchronous action 29

Rule: 204 ("No Content") should be used when the response body is

intentionally empty 29

Rule: 301 ("Moved Permanently") should be used to relocate resources 29

Rule: 302 ("Found") should not be used 29

Rule: 303 ("See Other") should be used to refer the client to a different

URI 30

Rule: 304 ("Not Modified") should be used to preserve bandwidth 30

Rule: 307 ("Temporary Redirect") should be used to tell clients to re¬

submit the request to another URI 30

Rule: 400 ("Bad Request") may be used to indicate nonspecific failure 30

Rule: 401 ("Unauthorized") must be used when there is a problem with

the client's credentials 31

Rule: 403 ("Forbidden") should be used to forbid access regardless of

authorization state 31

Rule: 404 ("Not Found") must be used when a client's URI cannot be

mapped to a resource 31

Rule: 405 ("Method Not Allowed") must be used when the HTTP

method is not supported 31

Rule: 406 ("Not Acceptable") must be used when the requested media

type cannot be served 32

Rule: 409 ("Conflict") should be used to indicate a violation of resource

state 32

Rule: 412 ("Precondition Failed") should be used to support conditional

operations 32

Rule: 415 ("Unsupported Media Type") must be used when the media

type of a request's payload cannot be processed 32

Rule: 500 ("Internal Server Error") should be used to indicate API mal¬

function 32

Recap 33

4. Metadata Design 35

HTTP Headers 35

Rule: Content-Type must be used 35

Rule: Content-Length should be used 35

Rule: Last-Modified should be used in responses 35

Rule: ETag should be used in responses 36

Rule: Stores must support conditional PUT requests 36

Rule: Location must be used to specify the URI of a newly created re¬

source 37

Rule: Cache-Control, Expires, and Date response headers should be

used to encourage caching 37

Table of Contents | v



Rule: Cache-Control, Expires, and Pragma response headers may be

used to discourage caching 38

Rule: Caching should be encouraged 38

Rule: Expiration caching headers should be used with 200 ("OK") re¬

sponses 38

Rule: Expiration caching headers may optionally be used with 3xx and

4xx responses 38

Rule: Custom HTTP headers must not be used to change the behavior

of HTTP methods 38

Media Types 39

Media Type Syntax 39

Registered Media Types 39

Vendor-Specific Media Types 40

Media Type Design 41

Rule: Application-specific media types should be used 41

Rule: Media type negotiation should be supported when multiple rep¬

resentations are available 43

Rule: Media type selection using a query parameter may be supported 44

Recap 44

5. Representation Design 47

Message Body Format 47

Rule: JSON should be supported for resource representation 47

Rule: JSON must be well-formed 48

Rule: XML and other formats may optionally be used for resource rep¬

resentation 48

Rule: Additional envelopes must not be created 49

Hypermedia Representation 49

Rule: A consistent form should be used to represent links 49

Rule: A consistent form should be used to represent link relations 52

Rule: A consistent form should be used to advertise links 53

Rule: A self link should be included in response message body repre¬

sentations 54

Rule: Minimize the number of advertised "entry point" API URIs 54

Rule: Links should be used to advertise a resource's available actions in

a state-sensitive manner 55

Media Type Representation 56

Rule: A consistent form should be used to represent media type formats 56

Rule: A consistent form should be used to represent media type schemas 59

Error Representation 68

Rule: A consistent form should be used to represent errors 68

Rule: A consistent form should be used to represent error responses 69

vi | Table of Contents



Rule: Consistent error types should be used for common error condi¬

tions 70

Recap 70

6. Client Concerns 71

Introduction 71

Versioning 71

Rule: New URIs should be used to introduce new concepts 71

Rule: Schemas should be used to manage representational form versions 72

Rule: Entity tags should be used to manage representational state ver¬

sions 72

Security 72

Rule: OAuth may be used to protect resources 72

Rule: API management solutions may be used to protect resources 73

Response Representation Composition 73

Rule: The query component of a URI should be used to support partial
responses 74

Rule: The query component of a URI should be used to embed linked

resources 76

Processing Hypermedia 78

JavaScript Clients 79

Rule: JSONP should be supported to provide multi-origin read access

from JavaScript 80

Rule: CORS should be supported to provide multi-origin read/write ac¬

cess from JavaScript 82

Recap 83

7. Final Thoughts 85

State of the Art 85

Uniform Implementation 86

Principle: REST API designs differ more than necessary 86

Principle: A REST API should be designed, not coded 87

Principle: Programmers and their organizations benefit from consis¬

tency 88

Principle: A REST API should be created using a GUI tool 89

Recap 91

Appendix: My First REST API 93

Table of Contents | vii


