

MATERIALS AND ENERGY - Vol. 1

HANDBOOK OF INSTRUMENTATION AND TECHNIQUES FOR SEMICONDUCTOR NANOSTRUCTURE CHARACTERIZATION

Editors

Richard Haight • Frances M Ross • James B Hannon

IBM TJ Watson Research Center, USA

with Foreword by Leonard C. Feldman

NEW JERSEY · LONDON · SINGAPORE · BEIJING · SHANGHAI · HONG KONG · TAIPEI · CHENNAI

CONTENTS

Foreword	xvii
Introduction	xxi

VOLUME 1

ELECTRON MICROSCOPIES

1.	Chara	cterizati	on of Semiconductor Nanostructures		
	by Sca	anning E	lectron Microscopy	1	
	Lynne M. Gignac and Oliver C. Wells				
	1.1.	Introdu	ction		
	1.2.	SEM Instrumentation		4	
		1.2.1.	Electron Sources	б	
		1.2.2.	Electron Lenses	8	
		1.2.3.	Electron Detectors	11	
		1.2.4.	Beam Deceleration/Sample Bias	15	
		1.2.5.	Aberration Correction	16	
		1.2.6.	Focused Ion Beam Systems	20	
	1.3.	Practic	al Examples	22	
		1.3.1.	Imaging with Low Incident Beam Energy	22	
		1.3.2.	Electron Beam Induced Sample Damage	23	
		1.3.3.	Use of Sample Bias/Beam Deceleration	24	
		1.3.4.	Use of a Source Monochromator	26	
		1.3.5.	Secondary Electron Detectors	28	

Contents

22

	1.4.	1.3.6. 1.3.7. Conclus Referer	Use of STEM Detector Imaging with High Incident Beam Energy sions nces	31 32 39 40
2.	Trans	mission	Electron Microscopy and Ultra-high	
	Vacu	um Trans	smission Electron Microscopy	
	of Se	micondu	ctor Nanostructures	43
	Sunee	el Kodan	nbaka and Frances M. Ross	
	2.1.	Introdu	uction to TEM and UHV TEM	44
	2.2.	TEM c	of Semiconductor Nanostructures	46
		2.2.1.	Sample Preparation	46
			2.2.1.1. Freestanding nanostructures	47
			2.2.1.2. Embedded or Epitaxial	
			nanostructures	48
		2.2.2.	High Resolution Imaging: Local Structure,	
			Strain and Composition	51
		2.2.3.	Bright Field and Dark Field Imaging: Strain	
			Fields and Dislocations	54
		2.2.4.	Analytical TEM: Composition and Bonding	
			Within Nanostructures	57
		2.2.5.	In situ TEM: Electrical, Mechanical and	
			Growth Measurements Nanostructures	59
		2.2.6.	Some Issues to Consider for TEM	61
	2.3.	Ultra-I	High Vacuum Transmission Electron	
		Micros	сору	63
		2.3.1.	Experimental Aspects of UHV TEM	63
			2.3.1.1. Microscope design	64
			2.3.1.2. Sample preparation	66
			2.3.1.3. Some issues to consider for UHV TEM	67
		2.3.2.	Plan View Bright and Dark Field Imaging:	
			Ge Quantum Dot Growth on Si(001)	68
		2.3.3.	Reflection Mode Imaging: Si and Ge Nanowire	
			Growth	71

				Contents	vii
			2.3.3.1.	Extending the range of nanowire	
			0330	growth experiments	74
			2.0.0.2.	TEM	74
		2.3.4.	Plan Vie	w Imaging and Diffraction: Thin Film	
			Silicide I	Reactions	75
		2.3.5.	Plan Vie	w Imaging and Diffraction:	
			Silicide I	slands	((
			2.3.5.1.	Compact silicide islands	70
		0.26	2.3.3.2. Dui-b+ E	Silicide nanowires	79
		2.3.0.	Bright F	Nanasaala Phase Transitions	01
	24	Summ	iniaging.	utlook	82
	2.4.	Doforo	ary and O	utiook	84
		Neiere	lices		04
3.	Aberr <i>Philip</i>	ation Co <i>E. Bat</i> s	orrected E 50 <i>n</i>	lectron Microscopy	89
	3.1.	Introd	uction		89
	3.2.	Multip	ole Correc	tion for the STEM	95
	3.3.	Measu	rement an	d Control of Aberration Optics	98
	3.4.	Stabili	ty Improve	ements Needed to Make Aberration	
		Correc	tion Succe	essful	101
	3.5.	Aberra	tion Nom	enclature and Probe Properties	105
	3.6.	Improv	/ement in	Images of Semiconductors	107
	3.7.	New C	apability I	Enabled by Aberration Correction	112
	3.8.	Next (Generation	Equipment	120
	3.9.	Conclu	isions		122
		Refere	nces		122
4.	Low-E	Energy [Electron N	licroscopy for Nanoscale	
	Chara	cterizat	ion		127
	James	s B. Hai	nnon and i	Rudolf M. Tromp	
	4.1.	Introd	uction		128
	4.2.	LEEM	/PEEM In	strumentation	129
		4.2.1.	The Cat	hode Objective Lens and Limit	
			Resoluti	on	129

Contents

1887 C

		4.2.2.	A Simple PEEM Instrument	134
		4.2.3.	A "Simple" LEEM Instrument	138
		4.2.4.	Energy Filtered LEEM/PEEM	143
		4.2.5.	Aberration Correction	149
		4.2.6.	Further Developments	151
	4.3.	Applica	itions of LEEM	153
		4.3.1.	LEEM Contrast	153
		4.3.2.	Selected Area Diffraction	157
		4.3.3.	Dark-field Imaging	159
		4.3.4.	Quantitative LEED Analysis	162
		4.3.5.	Quantum Well States	164
		4.3.6.	Fingerprinting	166
		4.3.7.	Quantitative LEED at the Nanoscale	167
		4.3.8.	Inelastic Imaging in LEEM	173
	4.4.	Conclus	sion	177
		Referer	ices	179
F	Hitza	fact Mich	researcy of Plasman Dynamics	
5.	in Ma		ured Metal Surfaces	183
		nostructi o Dotok	and Atsushi Kuba	100
	т <i>п v Oj</i> Б 1	e relek i Introdu	and Alsusin Nubo	184
	5.I. 5.0	Illtrafa	st Multidimensional Microscopy	185
	5.2.	Ultraia	Lasar Ruma Electron Broha Mathada	105
		5.2.1.	Laser Pump-Electron Probe Methods	105
		5.2.2.	Laser Fump-Frobe Flotoelectron imaging	197
		FDD	Interforemetric Time Resolved Distormission	101
		5.2.5.	Floatron Microscony	192
	БЭ	ם מדום		100
	5.3.	F 2 1	Litrafact Imaging of Plasmonia Dhanamana	101
		5.3.1.	Oltrafast imaging of Plasmonic Phenomena	102
			5.5.1.1. Localized surface plasmons	102
			5.3.1.2. Surface plasmon polaritons	104
		F 2 0	5.3.1.3. Imaging of plasmonic excitations	194
		5.3.2.	Outratast TIR-PEEM Imaging of Localized	106
			Surrace Masmon Woodes	106
			5.3.2.1. Imaging of plasmonic hot-spots	100
			5.3.2.2. IT R-PEEIVI imaging of SP dephasing	199

			Contents	ix
		5.3.3.	Ultrafast ITR-PEEM Imaging of Surface	
			Plasmon Polaritons	200
	5.4.	Conclu	isions and Outlook	206
		Refere	nces	207
6.	X-ray	Diffract	tion Methods for Studying Strain	
	and C	Composit	tion in Epitaxial Nanostructured Systems	211
	Ange	lo Malac	chias, Raul Freitas, Sérgio L. Morelhão,	
	Rogé	rio Maga	alhães-Paniago, Stefan Kycia and	
	Gilbe	rto Med	eiros-Ribeiro	
	6.1.	Introd	uction	212
	6.2.	Atomic	c Scattering Factor and Anomalous Diffracti	on 214
		6.2.1.	Atomic Form Factor	215
		6.2.2.	Anomalous (Resonant) X-ray Scattering	216
	6.3.	Form I	Factor of a Small Crystal	220
	б.4.	Struct	ure Factor	222
	6.5.	Coplar	nar and Grazing-Incidence Diffraction	225
	6.6.	Bragg-	Surface Diffraction	230
	6.7.	Evaluation of Strain in Nanostructures		
		6.7.1.	Polar Diagrams and Sample Preparation	
			Procedures	233
		6.7.2.	Uncapped Nanostructures	235
			6.7.2.1. The Ge:Si(001) system	235
			6.7.2.2. In-plane strain analysis	237
			6.7.2.3. Pseudomorphic relaxation	241
		6.7.3.	Capped Nanostructures	245
			6.7.3.1. Renninger scanning and	
			three-dimensional lattice parame	ter
			determination	245
			6.7.3.2. BSD mesh-scans and capping	
			process defects	251
	6.8.	Chemi	cal Composition Analysis by Anomalous X-r	ау
		Diffrac	tion	254
		6.8.1.	Composition in I wo-Element Systems	254
		6.8.2.	Complementary Anomalous X-ray	05-
			Diffraction — InP:GaAs(001)	257

Contents

		6.8.3. Th	nree-Dimensional Composition in Uncapped ands	266
	6.9.	Addressing	g Elastic, Thermodynamical and Growth	
		Properties		272
	6.10.	Conclusion	IS	275
		References		276
7.	Stress	Determina	tion in Semiconductor	
	Nanos	tructures U	sing X-ray Diffraction	281
	Conal	E. Murray	and I. Cevdet Noyan	
	7.1.	Introductio	on	282
	7.2.	Basic X-ra	y Analysis Techniques	284
		7.2.1. X-	ray Diffraction	284
		7.2.2. Ki	nematical Diffraction Theory	284
		7.2.3. St	rain	287
		7.2.4. Ef	fect of Sample Heterogeneity	288
	7.3.	Informatio	n Volume of X-ray Techniques	291
	7.4.	Focusing c	of X-rays	292
		7.4.1. Re	efractive Optics	293
		7.4.2. Re	eflective Optics	294
		7.4.2A. Ca	apillary Optics	294
		7.4.2B. X-	ray Mirrors	294
		7.4.3. Di	ffractive Optics	295
		7.4.3A. Fr	esnel Zone-Plates	295
	7.5.	Applicatio	ns	295
		7.5.1. Ex	perimental Considerations	296
		7.5.2. Sil	licon-on-insulator (SOI) Structures	297
		7.5.2A M	easurement of SOI Channel Strain Induced	
		by	Embedded Stressor Materials	298
		7.5.2B SC	OI Strain Distributions Generated by	
		0	verlying Stressor Materials	303
		7.5.3. To	ppographic Studies	307
		7.5.3A Si	Ge Features on Si(001)	307
	7.6.	Conclusion	IS	311
		References		311

Statistical and a second

х