Simple Brownian Diffusion

An Introduction to the Standard Theoretical Models

Daniel T. Gillespie & Effrosyni Seitaridou

Contents

1	\mathbf{The}	Fickian theory of diffusion	1
	1.1	Fick's Law and the diffusion equation	1
	1.2	Some one-dimensional examples	2
	1.3	The road ahead	16
	Note	e to Chapter 1	18
2	A review of random variable theory		
	2.1	Probability	19
	2.2	Definition of a random variable	20
	2.3	Some commonly encountered random variables	21
	2.4	Multivariate random variables	24
	2.5	Functional transformations of random variables: the RVT theorem	24
	2.6	Some useful consequences of the RVT theorem	26
	2.7	The bivariate normal random variable	30
	2.8	Generating numerical samples of random variables	31
	2.9	Integer-valued random variables	34
	Note	s to Chapter 2	36
3	Eins	stein's theory of diffusion	38
	3.1	Einstein's derivation of the diffusion equation	38
	3.2	A critique of Einstein's derivation	40
	3.3	Einstein's new perspective	40
	3.4	The covariance and correlation	42
	3.5	The relative diffusion coefficient	44
	3.6	The probability flux: boundary conditions	45
	3.7	The stochastic bimolecular chemical reaction rate: Part I	48
	Note	s to Chapter 3	54
4	Imp	lications and limitations of the Einstein theory of diffusion	57
	4.1	Numerical simulation strategies	57
	4.2	A serious problem	63
	4.3	Proof of Eqs (4.12) and (4.13) in two dimensions	64
	4.4	Implications of Eqs (4.12) and (4.13)	65
	4.5	A hint of a quantitative lower bound on Δt in Eqs (4.11)	66
	4.6	The small-scale motion of a solute molecule	67
	4.7	Collision probability of a solute molecule with a surface	67
	4.8	The stochastic bimolecular chemical reaction rate: Part II	71
	Note	s to Chapter 4	74
	App	endix 4A: Proof of the reflecting boundary point simulation procedure	75
	App	endix 4B: Proof of the absorbing boundary point simulation procedure	76
	App	endix 4C: The Maxwell–Boltzmann distribution	79

xii Contents	i

5	\mathbf{The}	discrete-stochastic approach	81
	5.1	Specification of the system	81
	5.2	The key dynamical hypothesis	83
	5.3	Connection to the classical Fickian model	85
	5.4	Connection to the Einstein model	86
	5.5	Constraints on l and δt	91
	5.6	A more accurate formula for κ_l	92
	5.7	The discrete-stochastic model's version of Fick's Law	95
	5.8	Does the concentration gradient "cause" diffusion?	98
	5.9	A microfluídics diffusion experiment	99
	Notes	s to Chapter 5	107
6	Mast	er equations and simulation algorithms for the	
	discr	ete-stochastic approach	109
	6.1	The single-molecule diffusion master equation	109
	6.2	Relation to the Einstein model of diffusion	110
	6.3	Solutions to the single-molecule master equation	112
	6.4	Simulating the discrete-stochastic motion of a single solute molecule	114
	6.5	Some examples of single-molecule simulations	116
	6.6	The many-molecule diffusion master equation	121
	6.7	The case $M = 2$: an exact solution of a different kind	123
	6.8	The moments of the cell populations: recovering the	
		diffusion equation	126
	6.9	Simulating the discrete-stochastic motion of an ensemble of solute	
		molecules	127
	6.10	Some examples of many-molecule simulations	129
	6.11	A simulation study of Fick's Law	136
	Appe	ndix 6A: General solution to the single-molecule master equation	141
	Appe	ndix 6B: Confidence intervals in Monte Carlo averaging	143
	Appe	ndix 6C: Derivation of the first moment equation (6.31)	145
7	Cont	inuous Markov process theory	149
	7.1	The Chapman–Kolmogorov and Kramers–Moyal equations	149
	7.2	The process increment and its PDF	151
	7.3	The self-consistency requirement	152
	7.4	Derivation of the Langevin equation	153
	7.5	Implications of the Langevin equation	156
	7.6	The forward Fokker–Planck equation	157
	7.7	Multivariate continuous Markov processes	159
	7.8	The driftless Wiener process	160
	7.9	The Ornstein–Uhlenbeck process	161
	7.10	The time-integral of the Ornstein–Uhlenbeck process	164
	7.11	Numerically simulating the driftless Wiener process	167
	7.12	Numerically simulating the Ornstein–Uhlenbeck process and its	
		integral	168

		Contents	xiii
	7.13 The backward Fokker–Planck equation Notes to Chapter 7		168 171
8	 Langevin's theory of diffusion 8.1 Langevin's key assumption 8.2 A physical rationale for Langevin's assumption 8.3 Fixing the factor <i>f</i>: the fluctuation-dissipation theorem 8.4 The Langevin diffusion formulas 8.5 The correlation between position and velocity 8.6 Two-time auto-correlations Note to Chapter 8 		174 174 176 180 181 182 184 190
9	Implications of Langevin's theory9.1The Langevin mean-square displacement formulas9.2The coefficient of diffusion: the connection to Einstein's the9.3The relaxation time and the characteristic diffusion length9.4Implications for the discrete-stochastic model of diffusion9.5The Langevin picture of $V_x(t)$ 9.6The Langevin simulation formulas9.7Examples of trajectory simulations in the Langevin and Eintheories9.8The relative motion of two solute molecules9.9The velocity auto-covariance formula for D9.10The energetics of diffusion9.11Are there "overdamped diffusing systems"?Notes to Chapter 9	eory nstein	 192 192 193 196 197 199 200 202 214 217 219 220 222
10	 Diffusion in an external force field 10.1 The Smoluchowski equation—a Fickian derivation 10.2 An application: a rudimentary type of gradient-sensing che 10.3 The Langevin equation for a solute molecule in an external force field 10.4 The Kramers equation 10.5 Energetics revisited 10.6 Some interesting aspects of the uninteresting limit γ → 0 10.7 The large-γ limit: the Smoluchowski equation revisited 10.8 A constant external force field in the Langevin picture Notes to Chapter 10 	motaxis	224 224 226 230 231 233 234 236 239 244
11	 The first-passage time approach 11.1 The basic first-passage time problem 11.2 Limitations of the usual simulation approaches 11.3 A direct analytical approach 11.4 A little help from the backward Fokker Planck equation 11.5 Formulas for the moments of the first-passage time 11.6 Explicit solutions for the mean and variance 		$247 \\ 248 \\ 249 \\ 251 \\ 253 \\ 255$

xiv Contents

$11.7 \\ 11.8$	Implications for the discrete-stochastic approach An "averaged" first-passage time	258 263
11.9	Some conclusions	266
Index		269