Michèle Audin • Mihai Damian

Morse Theory and Floer Homology

Translated by Reinie Erné

Contents

Pref	face .		vii
Part	ΊM	forse Theory	
Intr	oduc	tion to Part I	3
1	Morse Functions		7
	1.1	Definition of Morse Functions	7
	1.2	Existence and Abundance of Morse Functions	8
	1.3	The Morse Lemma, the Index of a Critical Point	12
	1.4	Examples of Morse Functions	16
	Exe	rcises	18
2	Pseudo-Gradients		23
	2.1	Gradients, Pseudo-Gradients and Morse Charts	23
	2.2	The Smale Condition	36
	2.3	Appendix: Classification of the Compact Manifolds of	
		Dimension 1	48
	Exer	cises	51
3	\mathbf{The}	Morse Complex	53
	3.1	Definition of the Complex	53
	3.2	The Space of Connections Between Two Critical Points,	
		or of "Broken Trajectories"	57
	3.3	Orientation, Complex over Z	67
	3.4	The Homology of the Complex Depends Neither on	
		the Function Nor on the Vector Field	68
	3.5	Cobordisms	75
	Exer	cises	78

4.1 Homology		
	• • •	79
4.2 The Künneth Formula		81
4.3 The "Poincaré" Duality		83
4.4 Euler Characteristic, Poincaré Polynomial		84
4.5 Homology and Connectedness		87
4.6 Functoriality of the Morse Homology		91
4.7 Long Exact Sequence		98
4.8 Applications		101
4.9 Appendix: The Morse Homology is the Cellular Homology	• • •	110
Exercises		121

Part II The Arnold Conjecture, Floer Homology

Int	roduc	tion to Part II
5	$\mathbf{W}\mathbf{h}$	at You Need to Know About Symplectic Geometry 129
	5.1	Symplectic Vector Spaces
	5.2	Symplectic Manifolds, Definition
	5.3	Examples of Symplectic Manifolds 131
	5.4	Hamiltonian Vector Fields, Hamiltonian Systems
	5.5	Complex Structures
	5.6	The Symplectic Group 144
6	The	e Arnold Conjecture and the Floer Equation
	6.1	The Arnold Conjecture 151
	6.2	Outline of the Proof, Floer Homology 154
	6.3	The Action Functional 156
	6.4	The Gradient, the Floer Equation 162
	6.5	The Space of Solutions 164
	6.6	Proof of the Compactness
	6.7	Appendix: Functions, Closed Forms, Covers
	6.8	Appendix: Structure of a Banach Manifold on $\mathcal{L}W$
7	\mathbf{The}	e Geometry of the Symplectic Group, the Maslov
		ex
	7.1	Toward the Definition of the Index
	7.2	The Maslov Index of a Path 196
	7.3	Appendix: Construction and Properties of ρ
8	Lin	earization and Transversality
	8.1	The Results
	8.2	The Banach Manifold $\mathcal{P}^{1,p}(x,y)$
	8.3	The Space of Perturbations of H
	8.4	Linearization of the Floer Equation: Computation of
		the Differential of \mathcal{F}

	8.5 8.6	The Transversality The Solutions of the Floer Equation Are "Somewhere	242
	0.0	Injective"	255
	8.7	The Fredholm Property	
	8.8	Computing the Index of L	285
	8.9	The Exponential Decay	296
9	\mathbf{Spa}	ces of Trajectories	
	9.1	The Spaces of Trajectories	
	9.2	Broken Trajectories, Gluing: Statements	
	9.3	Pre-gluing	
	9.4	Construction of ψ	
	9.5	Properties of ψ : ψ Is an Immersion	
	9.6	Properties of ψ : Uniqueness of the Gluing	334
10		m Floer to Morse	
		The Results.	359
	10.2	The Linearization of the Flow of a Pseudo-Gradient Field, Proof of Theorem 10.1.3	369
	10.2	Proof of Theorem 10.1.2 (Regularity)	
		The Morse and Floer Trajectories Coincide	
		-	
11		er Homology: Invariance	
		The Morphism Φ^{Γ}	
		Proof of Theorem 11.1.16	
		Invariance of Φ^{Γ} : Proof of Proposition 11.2.8	
		Proof of Theorem 11.3.14	426
	11.5	Conclusion of the Proof of the Invariance of the Floer	197
	11.0	Homology: Proof of Proposition 11.2.9	
	11.0	Conclusion	491
12		e Elliptic Regularity of the Floer Operator	
		Elliptic Regularity: Why and How?	
		Proof of Lemma 8.7.2	
		Proof of Theorem 12.1.2	461
		(Nonlinear) Elliptic Regularity of the Floer Operator,	
		Proofs	465
13		E Lemmas on the Second Derivative of the Floer	
	-	erator and Other Technicalities	
		Versions of the Floer Operator	
		The Two Lemmas on dF	
		The Operator \mathcal{F}_{ρ}	
		Proof of the Two Lemmas: The First One	
		Proof of the Two Lemmas: The Second One	
	-13.6	Another Technical Lemma	491

		Two Other Technical Lemmas)0	
		Derivative)7	
14	Exer	rcises for the Second Part	15	
	14.1	Exercises on Chapter 5	15	
	14.2	Exercises on Chapter 6	22	
	14.3	Exercises on Chapter 7 52	26	
	14.4	Exercises on Chapter 8	30	
	14.5	Exercises on Chapter 10	31	
	14.6	Exercises on Chapter 11 53	31	
Appendices: What You Need to Know to Read This Book				
Α	A B	it of Differential Geometry53	35	
	A.1	Manifolds and Submanifolds 53	35	
	A.2	Critical Points, Critical Values and Sard's Theorem 54	40	
	A.3	Transversality	42	
	A.4	Vector Fields as Differential Equations	47	

	A.5	Riemannian Metrics, Exponential Map 552	2
в	ΑE	it of Algebraic Topology 558	5
	B.1	A Bit of Algebraic Homology 558	5
		Chern Classes	
С	ΑE	Sit of Analysis	1
	C.1	The Arzelà-Ascoli Theorem	1
	C.2	Fredholm Theory 562	2
	C.3	Distribution Spaces, Weak Solutions 570	
		Sobolev Spaces on \mathbb{R}^n	
		The Cauchy–Riemann Equation	
Refe	erenc	es	5
Inde	x of	Notation	9
Inde	x		1