Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

Robert Kohlleppel

Ground moving target tracking with space-time adaptive radar

FRAUNHOFER VERLAG

Contents

1	Introduction						
2	Fun	damentals of ground moving target indication	19				
	2.1	Airborne MTI radar	19				
	2.2	The radar signal	23				
	2.3	Data processing and target detection	26				
	2.4	Signal model	29				
	2.5	Space time adaptive processing	31				
		2.5.1 Fully adaptive space time processing	31				
		2.5.2 Partially adaptive space time processing	32				
		2.5.3 Performance of STAP	34				
		2.5.4 Parameter estimation	36				
3	Ground moving target indication and geolocation 37						
-	3.1	Application of space time adaptive processing to a received data set	40				
	0.1	3.1.1 Signal model of the received data set	40				
		312 Data preprocessing	40				
		3.1.2 Data preprocessing	42				
	29	Dependent of the set in the set of the set of the post of the processing	40				
	0.2	2.2.1 Terret redict velocity	40				
		3.2.1 Target radial velocity	40				
		3.2.2 Target range	40				
	0.0	Geological distribution of arrival estimation	40				
	ა.ა	Geolocation of detections	48				
		3.3.1 Geolocation of the detections with a plane earth assumption	49				
		3.3.2 Conversion of the Doppler measurement with a plane earth assumption .	50				
		3.3.3 Geolocation with a digital elevation model	51				
4	Fun	Fundamentals of target tracking					
	4.1	Probability Hypothesis Density Filter	59				
	4.2	Gaussian Mixture Probability Hypothesis Density Filter	61				
5	Ground moving target tracking algorithm 65						
	5.1	Basic design choices	66				
	5.2	Modifications of the standard GM-PHD filter	67				
		5.2.1 State dependent detection probability	67				
		5.2.2 Association between detections and components	69				
		5.2.3 Merging with the Kullback-Leibler divergence	70				
		5.2.4 Ancestor relation	71				
		5.2.5 Immediate deletion of missed detection birth component descendants	73				
		5.2.6 Component fingerprints	74				
		5.2.7 Visualization of the GM-PHD filter results	76				
		5.2.8 Track extraction	77				
		Shire Frider CAUTUCHOIL	- 1 (

5.3 5.4	Ground moving target tracking specific adaptations of the GM-PHD5.3.1Definition of the target state space5.3.2State propagation5.3.3Definition of the measurement space5.3.4Definition of the observation process5.3.5Jacobians of the observation process5.3.6Modeling of the state dependent probability of detection5.3.7An expression for the false alarm probabilityUse of a digital elevation model5.4.1Conversion from an ENU state to a track state5.4.3Error propagation	77 77 81 82 83 86 87 89 91 92 92 92
Trac 6.1 6.2	king results with simulated data Simulation of ground moving target detections by an airborne radar Tracking results with simulated scenarios	93 93 96
	6.2.1 Scenario 1	97 99 100
$\begin{array}{c} 6.3 \\ 6.4 \end{array}$	Example of the direct visualization of GM-PHD filter results	$104\\105$
Expe 7.1 7.2 7.3	erimental results Acquisition of the dataset Target detections Tracking results	107 107 113 114
Trac 8.1 8.2 8.3 8.4 8.5	Example 3.1 Signal adaptive measurement error covariance matrix Proposed model for the direction of arrival measurement error model Experimental validation of the direction of arrival measurement error model 8.2.1 Association between detections and ground reference vehicles 8.2.2 Deviation of the radar and GPS based DOA measurements 8.2.3 Variance of the deviation between the DOA estimates 8.2.4 Experimental results Tracking with measurement covariance matrix adaptation Tracking results with experimental data	119 120 121 124 125 125 126 130 130 133
Con	clusion	143
Algo A.1 A.2	Geolocation of a target	145 147 147 150 152 153 153 153
	5.3 5.4 Trac 6.1 6.2 6.3 6.4 Expo 7.1 7.2 7.3 Trac 8.1 8.2 8.3 8.4 8.5 Con A.1 A.2	5.3 Ground moving target tracking specific adaptations of the GM-PHD 5.3.1 Definition of the target state space 5.3.3 Definition of the measurement space 5.3.4 Definition of the observation process 5.3.5 Jacobians of the observation process 5.3.6 Modeling of the state dependent probability 5.4 Use of a digital elevation model 5.4.1 Conversion from an ENU state to a track state 5.4.2 Conversion from an ENU state to a track state 5.4.3 Error propagation 5.4.4 Conversion from a track state to an ENU state 5.4.3 Error propagation Tracking results with simulated data 6.1 Simulation of ground moving target detections by an airborne radar 6.2.1 Scenario 1 6.2.2 Scenario 2 6.3 Gaussition of the dataset 7.1 Acquisition of the dataset 7.2 Target detections 7.3 Tracking results 7.4 Auguistion of the dataset 7.5 Target detections 7.6 Arguistion of the dataset 7.7 Target detec

	A.2.3	Determine a unique solution for the surface velocity component: $f^{v \leftarrow urv}$.	157
A.3	Range.	radial velocity and directional cosine of a target	157
	A.3.1	Function $f^{uvv \leftarrow \mathcal{E}}$	157
	A.3.2	Jacobian of $f^{\text{urv} \leftarrow \mathcal{E}}$	158
A.4	Clutte	Doppler frequency versus range and directional cosine	160
A.5	Function	ons that are used by the tracking algorithm	161
	A.5.1	Radar measurement to track measurement conversion: $f^{\mathcal{M}\leftarrow urv}$	161
	A.5.2	Definition of the measurement function: h_k	161
	A.5.3	Track measurement based on target state including measurement errors:	
		$f_{\epsilon}^{\mathcal{M} \leftarrow \mathcal{S}}$	162
	A.5.4	Track measurement based on the track state without effect of measurement	
		noise: $f_0^{\mathcal{M}\leftarrow\mathcal{S}}$	162
	A.5.5	Conversion of a location from 2 to 3 dimensions: $f_p^{3\leftarrow 2}$	163
	A.5.6	Conversion of a velocity vector from 2 to 3 dimensions: $f_{v}^{3\leftarrow 2}$	164
	A.5.7	Conversion of a 3d location to 2 dimensions: $f^{2\leftarrow 3}$	164
	A.5.8	Conversion of a 3d velocity vector to 2 dimensions $f^{P2\leftarrow \mathcal{E}}$	165
	A.5.9	Locate a target in the tracking plane based on range and DOA measuremen	t165
	A.5.10	Radar measurements based on track state: $f^{uvv \leftarrow S}$	165
	A.5.11	Radar measurement based on track measurement: $f^{uv \leftarrow M}$	166
A.6	Jacobi	ans of functions that are used by the tracking algorithm	167
	A.6.1	Jacobian of the functions that converts a 3d location to a 2d location	167
	A.6.2	Jacobian of the function that converts the range Doppler measurement to	
		a location in the tracking plane	168
	A.6.3	Jacobian of the function that converts the radar measurment to the track	
		input measurement	168
	A.6.4	Jacobian of the track measurement with respect to measurement noise	169
	A.6.5	Jacobian of the synthetic measurement with respect to the track state in	1 50
		the abscence of noise	170
	A.6.6	Jacobian of the radar measurements with respect to the track state	170
	A.6.7	Jacobian of the radar measurement with respect to the track measurement	172
A.7	Other	functions	170
	A.7.1	Euler rotation matrix	174
	A.(.2	Dili i te relation	174
10	A.1.3	Bilinear Interpolation	175
A.0		Mapping from the planar location to FNU location	175
	A.0.1	Mapping from the track velocity to ENU velocity	176
A 0	A.o.2	ions of the conversion between FNU and track coordinate systems	177
п.э	Δ Q 1	Jacobian of the location conversion with respect to the location	177
	Δ 0 2	Jacobian of the location conversion with respect to the DEM model parameter	rs177
	A 9 3	Jacobian of the location conversion with respect to track state and DEM	
	11.0.0	model parameters	178
	A.9.4	Jacobian of ENU velocity with resepect to the DEM parameters	179
	A.9.5	Jacobian of ENU velocity with resepect to the track location	179
	A.9.6	Jacobian of ENU velocity with resepect to the track velocity	180
	A.9.7	Jacobian of the ENU velocity with respect to the entire track state and the	
		DEM parameters	180
	A.9.8	Jacobian of entire ENU state with respect to the entire track state and the	
		DEM parameters	181