INTRODUCTORY DIGITAL IMAGE PROCESSING A Remote Sensing Perspective

John R. Jensen University of South Carolina

Contents

Preface XX

About the Author XXV

1 Remote Sensing and Digital Image Processing

Overview 1 In Situ Data Collection 1 **Remote Sensing Data Collection 3 Observations About Remote Sensing 4** Remote Sensing: Art and/or Science? 4 Information About an Object or Area 7 The Instrument (Sensor) 7 Distance: How Far Is Remote? 7 Remote Sensing Advantages and Limitations 7 Advantages 7 Limitations 8 The Remote Sensing Process 8 Statement of the Problem 8 Identification of In situ and Remote Sensing Data Requirements 9 Collateral Data Requirements 10 Remote Sensing Data Requirements 10 Remote Sensing Data Collection 10 Spectral Information and Resolution 12 Spatial Information and Resolution 13 Temporal Information and Resolution 16 Radiometric Information and Resolution 17 Polarization Information 17 Angular Information 18 Suborbital (Airborne) Remote Sensing Systems 20 Satellite Remote Sensing Systems 20 **Remote Sensing Data Analysis 23** Analog (Visual) Image Processing 24 Digital Image Processing 24 Information Presentation 27 Earth Observation Economics 28 Remote Sensing/Digital Image Processing Careers in the Public and Private Sectors 29 Earth Resource Analysis Perspective 30 **Book Organization 32 References 32**

2 Remote Sensing Data Collection

Overview 37 Analog (Hard-Copy) Image Digitization 37 Digital Image Terminology 37 **Microdensitometer Digitization 38** Video Digitization 40 Linear and Area Array Charge-Coupled-Device Digitization 40 Digitized National Aerial Photography Program (NAPP) Data 42 **Digitization Considerations 44 Digital Remote Sensor Data Collection** 44 Multispectral Imaging Using Discrete Detectors and Scanning Mirrors 47 Multispectral Imaging Using Linear Arrays 48 Imaging Spectrometry Using Linear and Area Arrays 48 Airborne Digital Cameras 48 Satellite Analog and Digital Photographic Systems 48 Multispectral Imaging Using Discrete Detectors and Scanning Mirrors 48 Earth Resource Technology Satellites and Landsat 1-7 Sensor Systems 48 Landsat Multispectral Scanner 51 Landsat Thematic Mapper (TM) 53 Landsat 7 Enhanced Thematic Mapper Plus 57 NOAA Multispectral Scanner Sensors 63 Geostationary Operational Environmental Satellite (GOES) 64 Advanced Very High Resolution Radiometer 67 NOAA Suomi NPOESS Preparatory Project (NPP) 69 SeaStar Satellite and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 70 SeaWiFS 71 Multispectral Imaging Using Linear Arrays 73 NASA Earth Observing-1 (EO-1) Advanced Land Imager (ALI) 73 Advanced Land Imager (ALI) 73 NASA Landsat 8 (LDCM - Landsat Data Continuity Mission) 75 Orbital Land Imager 75 SPOT Sensor Systems 76 SPOT 1, 2, and 3 76 SPOT 4 and 5 79 SPOT 6 and 7 81 Pleiades 81 Pleiades 1A and 1B 81 Indian Remote Sensing Systems 82 IRS-1A, -1B, -1C, and -1D 83 CartoSat 84 ResourceSat 85 Korean Aerospace Research Institute (KARI) KOMPSATs 85 Astrium, Inc. Sentinel-2 87

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 88 Multiangle Imaging Spectroradiometer (MISR) 89 GeoEye, Inc. (formerly Space Imaging, Inc.), IKONOS-2, GeoEye-1, GeoEye-2 90 IKONOS-1 and -2 90 GeoEye-1 and -2 91 EarthWatch/DigitalGlobe, Inc., QuickBird, WorldView-1, WorldView-2, WorldView-3 91 QuickBird 92 World-View-1, -2, and -3 92 ImageSat International, Inc., EROS A and EROS B 92 EROS A and EROS B 92 RapidEye, Inc. 93 RapidEye 93 DMC International Imaging, Ltd., SLIM-6 and NigeriaSat-2 93 SLIM-6 93 DMC-NigeriaSat-2 94 Imaging Spectrometry Using Linear and Area Arrays 94 NASA EO-1 Hyperion Hyperspectral Imager 96 Hyperion 96 NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 96 AVIRIS 97 Moderate Resolution Imaging Spectrometer (MODIS) 97 NASA Hyperspectral Infrared Imager (HyspIRI) 98 Itres, Inc. Compact Airborne Spectrographic Imager-1500 99 CASI-1500 99 SASI-600 99 MASI-600 99 TASI-600 100 HyVista, Inc., HyMap 100 Airborne Digital Cameras 101 Small-Format Digital Cameras 101 Medium-Format Digital Cameras 102 Leica Geosystems, Ag., RCD30 102 Large-Format Digital Cameras 102 Leica Geosystems, Ag., ADS80, Z/I Imaging DMC Aerial Photography 102 Microsoft, Inc., UltraCam Eagle 104 Digital Oblique Aerial Photography 105 Pictometry International, Inc., Oblique and Vertical Aerial Photography 105 Satellite Digital Frame Camera Systems 106 U.S. Space Shuttle Photography 106 Space Shuttle Analog Cameras 106 Space Shuttle and Space Station Digital Photography 107 Digital Image Data Formats 108 Band Interleaved by Pixel Format 108 Band Interleaved by Line Format 108 Band Sequential Format 108 Summary 108 **References 108**

3 Digital Image Processing Hardware and Software

Overview 111 Digital Image Processing Hardware Considerations 111 **Central Processing Unit Considerations 112** History of Central Processing Units and Efficiency Measurement 112 Type of Computer 115 Personal Computers 115 Computer Workstations 115 Mainframe Computers 115 Read-Only Memory and Random Access Memory 116 Serial and Parallel Image Processing 116 Mode of Operation and User Interface 116 Mode of Operation 116 Interactive Graphical User Interface 119 Batch Processing 120 Computer Operating System and Compiler(s) 120 Input Devices 121 **Output Devices** 121 Data Storage and Archiving Considerations 122 Rapid Access Mass Storage 122 Archiving Considerations—Longevity 123 **Computer Display Spatial and Color Resolution 123 Computer Screen Display Resolution 123 Computer Screen Color Resolution 125** Digital Image Processing Software Considerations 125 Image Processing Functions 126 **Digital Image Processing Software 126** Multispectral Digital Image Processing Software 127 Geographic Object-based Image Analysis (GEOBIA) 127 Hyperspectral Digital Image Processing Software 127 LiDAR Digital Image Processing Software 127 RADAR Digital Image Processing Software 129 Photogrammetric Mapping Software 129 Change Detection 129 Integration of Digital Image Processing and GIS Functions 129 **Cost** 129 Open-Source Digital Image Processing Software 129 Open-Source Statistical Analysis Software that can be used for Digital Image Processing 129 Digital Image Processing and the National Spatial Data Infrastructure 130 **References 130**

4 Image Quality Assessment and Statistical Evaluation

Overview 131 Image Processing Mathematical Notation 131 Sampling Theory 132 Types of Sampling 132 The Histogram and its Significance to Digital Image Processing 133 Metadata 134 Viewing Individual Pixel Values at Specific Locations or within a Geographic Area 137 **Cursor Evaluation of Individual Pixel Brightness Values** 137 Two- and Three-dimensional Evaluation of Pixel Brightness Values within a Geographic Area 138 Univariate Descriptive Image Statistics 138 Measure of Central Tendency in Remote Sensor Data 138 Measures of Dispersion 138 Measures of Distribution (Histogram) Asymmetry and Peak Sharpness 141 Multivariate Image Statistics 141 **Covariance in Multiple Bands of Remote Sensor Data 142** Correlation between Multiple Bands of Remotely Sensed Data 142 Feature Space Plots 145 Geostatistical Analysis, Autocorrelation and Kriging Interpolation 145 Calculating Average Semivariance 148 **Empirical Semivariogram** 148 **References 151**

5 Display Alternatives and Scientific Visualization

Overview 153 Image Display Considerations 153 Black-and-White Hard-Copy Image Display 154 Line Printer/Plotter Brightness Maps 154 Laser or Ink-Jet Printer Brightness Maps 156 Temporary Video Image Display 156 Black-and-White and Color Brightness Maps 157 Image Data Format and Compression Scheme 157 **Bitmapped Graphics** 157 **RGB Color Coordinate System 160** Color Look-Up Tables: 8-bit 160 Color Look-Up Tables: 24-bit 164 Color Composites 164 **Optimum Index Factor** 164 Sheffield Index 167 Independent Component Analysis-Based Fusion for Color Display of Hyperspectral Images 167 Merging (Fusing) Remotely Sensed Data 167 Simple Band Substitution 169 Color Space Transformation and Component Substitution 169 RGB to IHS Transformation and Back Again 169 Chromaticity Color Coordinate System and the Brovey Transformation 172 Principal Component Analysis (PCA), Independent Component Analysis (ICA), or Gram-Schmidt Substitution 173 Pixel-by-Pixel Addition of High-Frequency Information 175 Fusion based on Regression Kriging 175 Smoothing Filter-Based Intensity Modulation Image Fusion 175 Length (Distance) Measurement 176 Linear Distance Measurement Based on the Pythagorean Theorem 176 Manhattan Distance Measurement 177 Perimeter, Area, and Shape Measurement 179 Perimeter Measurement 179 Area Measurement 180 Shape Measurement 181 References 181

6 Electromagnetic Radiation Principles and Radiometric Correction

Overview 185 Electromagnetic Energy Interactions 186 Conduction, Convection, and Radiation 186 Electromagnetic Radiation Models 187 Wave Model of Electromagnetic Energy 187 The Particle Model: Radiation from Atomic Structures 191 Atmospheric Energy-Matter Interactions 196 **Refraction 196** Scattering 197 Absorption 198 **Reflectance 200** Terrain Energy–Matter Interactions 201 Hemispherical Reflectance, Absorptance, and Transmittance 202 Radiant Flux Density 203 Irradiance and Exitance 203 Radiance 203 Energy-Matter Interactions in the Atmosphere Once Again 204 Energy-Matter Interactions at the Sensor System 204 **Correcting Remote Sensing Detector Error** 205 Random Bad Pixels (Shot Noise) 205 Line or Column Drop-Outs 205 Partial Line or Column Drop-Outs 207 Line-Start Problems 207 N-Line Striping 207 Remote Sensing Atmospheric Correction 208 **Unnecessary Atmospheric Correction 208 Necessary Atmospheric Correction 211** Types of Atmospheric Correction 212 Absolute Radiometric Correction of Atmospheric Attenuation 212 Target and Path Radiance 214 Atmospheric Transmittance 215 Diffuse Sky Irradiance 216 Atmospheric Correction Based on Radiative Transfer Modeling 216 Absolute Atmospheric Correction Using Empirical Line Calibration 220 Relative Radiometric Correction of Atmospheric Attenuation 223 Single-Image Normalization Using Histogram Adjustment 224 Multiple-Date Image Normalization Using Regression 224

Correcting for Slope and Aspect Effects 230 The Cosine Correction 230 The Minnaert Correction 231 A Statistical-Empirical Correction 231 The C Correction 231 Local Correlation Filter 232 References 232

7 Geometric Correction

Internal and External Geometric Error 235
Internal Geometric Error 235
Image Offset (Skew) Caused by Earth Rotation Effects 235
Scanning System-Induced Variation in Ground Resolution Cell Size 236
Scanning System One-Dimensional Relief Displacement 239
Scanning System Tangential Scale Distortion 240
External Geometric Error 240
Altitude Changes 240
Attitude Changes 240
Ground Control Points 242
Types of Geometric Correction 242
Image-to-Map Rectification 242
Image-to-Image Registration 243
Hybrid Approach to Image Rectification/Registration 243
Image-to-Map Geometric Rectification Logic 244
Spatial Interpolation Using Coordinate Transformations 244
Intensity Interpolation 250
An Example of Image-to-Map Rectification 252
Selecting an Appropriate Map Projection 252
Developable Surfaces used to Create Map Projections 253
Map Projection Characteristics 253
Cylindrical Map Projections 254
Azimuthal (Planar) Map Projections 260
Conical Map Projections 261
Other Projections and Coordinate Systems Useful for Image Rectification 263
Ground Control Point Collection 263
Determine Optimum Geometric Rectification Coefficients by Evaluating GCP Total RMS _{error} 263
Multiple Regression Coefficients Computation 264
Fill Output Matrix Using Spatial and Intensity Interpolation Resampling 267
Mosaicking 267
Mosaicking Rectified Images 267
Conclusion 271
References 271

8 Image Enhancement

Overview 273 Image Reduction and Magnification 273 Image Reduction 273 Image Magnification 274 **Transects (Spatial Profiles) 275 Spectral Profiles 279 Contrast Enhancement 282** Linear Contrast Enhancement 282 Minimum–Maximum Contrast Stretch 282 Percentage Linear and Standard Deviation Contrast Stretching 284 Piecewise Linear Contrast Stretch 286 Nonlinear Contrast Enhancement 286 Band Ratioing 288 Neighborhood Raster Operations 291 Qualitative Raster Neighborhood Modeling 292 Quantitative Raster Neighborhood Modeling 293 Spatial Filtering 293 Spatial Convolution Filtering 293 Low-frequency Filtering in the Spatial Domain 294 High-frequency Filtering in the Spatial Domain 297 Edge Enhancement in the Spatial Domain 298 The Fourier Transform 302 Spatial Filtering in Frequency Domain 306 Principal Components Analysis (PCA) 308 Vegetation Indices (VI) 314 Dominant Factors Controlling Leaf Reflectance 316 Visible Light Interaction with Pigments in the Palisade Mesophyll Cells 316 Near-Infrared Energy Interaction within the Spongy Mesophyll Cells 320 Middle-Infrared Energy Interaction with Water in the Spongy Mesophyll 323 Remote Sensing-Derived Vegetation Indices 325 Simple Ratio—SR 325 Normalized Difference Vegetation Index—NDVI 325 Kauth-Thomas Tasseled Cap Transformation 327 Normalized Difference Moisture or Water Index—NDMI or NDWI 332 Perpendicular Vegetation Index—PVI 333 Leaf Water Content Index—LWCI 333 Soil Adjusted Vegetation Index—SAVI 334 Atmospherically Resistant Vegetation Index—ARVI 335 Soil and Atmospherically Resistant Vegetation Index—SARVI 335 Aerosol Free Vegetation Index—AFRI 335 Enhanced Vegetation Index—EVI 336 Triangular Vegetation Index—TVI 336 Reduced Simple Ratio-RSR 336

Chlorophyll Absorption in Reflectance Index—CARI 337 Modified Chlorophyll Absorption in Reflectance Index—MTCARI 337 Optimized Soil-Adjusted Vegetation Index—OSAVI 337 Ratio TCARI/OSAVI 337 Visible Atmospherically Resistant Index—VARI 338 Normalized Difference Built-Up Index-NDBI 338 Vegetation Adjusted Nighttime Light (NTL) Urban Index-VANUI 338 Red-Edge Position Determination—REP 339 Photochemical Reflectance Index—PRI 339 NDVI and Cellulose Absorption Index—CAI 339 MERIS Terrestrial Chlorophyll Index-MTCI 339 Normalized Burn Ratio—NBR 340 Vegetation Suppression 340 **Texture Transformations 340** First-Order Statistics in the Spatial Domain 340 Edge-Preserving Spectral-Smoothing (EPSS) Variance Texture 341 Conditional Variance Detection 342 Min-Max Texture Operator 343 Moran's / Spatial Autocorrelation as a Texture Measure 344 Second-Order Statistics in the Spatial Domain 345 Texture Units as Elements of a Texture Spectrum 348 Texture Statistics Based on the Semi-variogram 349 Landscape Ecology Metrics 350 Landscape Indicators and Patch Metrics 351 **References 353**

...

9 Thematic Information Extraction: Pattern Recognition

Overview 361
Introduction 361
Supervised Classification 362
Land-Use and Land-Cover Classification Schemes 364
American Planning Association Land-Based Classification Standard (LBCS) 365
USGS Anderson Land-Use/Land-Cover Classification System for Use with Remote Sensor Data 366
National Land Cover Database (NLCD) Classification System 367
NOAA Coastal Change Analysis Program (C-CAP) Classification Scheme 370
U.S. Department of the Interior Fish & Wildlife Service Classification of Wetlands and Deepwater
Habitats of the United States 371
U.S. National Vegetation Classification Standard (NVCS) 371
International Geosphere-Biosphere Program <i>IGBP Land-Cover Classification System</i> Modified for the Creation of MODIS Land-Cover Type Products 374
Observations about Classification Schemes 375
Training Site Selection and Statistics Extraction 376
Selecting the Optimum Bands for Image Classification: Feature Selection 382
Graphic Methods of Feature Selection 382
Statistical Methods of Feature Selection 386
Select the Appropriate Classification Algorithm 393
Parallelepiped Classification Algorithm 393
Minimum Distance to Means Classification Algorithm 395
Nearest-Neighbor Classifiers 396
Maximum Likelihood Classification Algorithm 398
Unsupervised Classification 402
Unsupervised Classification Using the Chain Method 402
Pass 1: Cluster Building 403
Pass 2: Assignment of Pixels to One of the C _{max} Clusters Using Minimum Distance Classification 404
Unsupervised Classification Using the ISODATA Method 406
ISODATA Initial Arbitrary Cluster Allocation 407
ISODATA First Iteration 408; Second to Mth Iteration 409
Unsupervised Cluster Busting 412
Fuzzy Classification 412
Object-Based Image Analysis (OBIA) Classification 413
Geographic Object-Based Image Analysis and Classification 414
OBIA Classification Considerations 420
Incorporating Ancillary Data in the Classification Process 421
Problems Associated with Ancillary Data 422
Approaches to Incorporating Ancillary Data to Improve Remote Sensing Classification Maps 422
Geographical Stratification 422
Classifier Operations 422
Post-Classification Sorting 423
Reterences 423

10 Information Extraction Using Artificial Intelligence

Overview 430
Expert Systems 430
Expert System User Interface 430
Creating the Knowledge Base 430
Algorithmic Approaches to Problem Solving 431
Heuristic Knowledge-Based Expert System Approaches to Problem Solving 431
The Knowledge Representation Process 432
Inference Engine 434
On-Line Databases 435
Expert Systems Applied to Remote Sensor Data 435
Decision-Tree Classification Based on Human-Derived Rules 435
Hypotheses to Be Tested 436
Rules (Variables) 436
Conditions 436
Inference Engine 436
Classification Based on Machine Learning Decision Trees and Regression Trees 436
Machine Learning 438
Decision-Tree Training 441
Decision-Tree Generation 441
From Decision Trees to Production Rules 441
Case Study 442
Advantages of Decision-Tree Classifiers 442
Random Forest Classifier 444
Support Vector Machines 444
Neural Networks 445
Components and Characteristics of a Typical Artificial Neural Network Used to Extract
Information from Remotely Sensed Data 446
Training an Artificial Neural Network 446
Testing (Classification) 447
Mathematics of the Artificial Neural Network 447
Feed Forward Multi-Layer Perceptron (MLP) Neural Network with Back Propagation (BP) 448
Kohonen's Self-Organizing Map (SOM) Neural Network 450
Fuzzy ARTMAP Neural Network 451
Advantages of Artificial Neural Networks 451
Limitations of Artificial Neural Networks 453
Potoronaca 452

References 453

11 Information Extraction Using Imaging Spectroscopy

Overview 459 Panchromatic, Multispectral and Hyperspectral Data Collection 459 Panchromatic 459 **Multispectral 460** Hyperspectral 460 Satellite Hyperspectral Sensors 460 Airborne Optical Hyperspectral Sensors 460 Airborne Thermal-Infrared Hyperspectral Sensors 461 Steps to Extract Information from Hyperspectral Data 462 Select Study Area from Flight Lines 465 Initial Image Quality Assessment 465 Visual Examination of Hyperspectral Color Composite Images 465 Visual Individual Band Examination 465 Animation 465 Statistical Individual Band Examination 467 **Radiometric Calibration** 467 In Situ Data Collection 468 **Absolute Atmospheric Correction 469** Radiative Transfer-Based Absolute Atmospheric Correction 469 Absolute Atmospheric Correction using Empirical Line Calibration 471 Geometric Correction of Hyperspectral Remote Sensor Data 471 Reducing the Dimensionality of Hyperspectral Data 472 Minimum Noise Fraction (MNF) Transformation 472 Endmember Determination: Locating the Spectrally Purest Pixels 474 Pixel Purity Index Mapping 475 n-Dimensional Endmember Visualization 475 Mapping and Matching using Hyperspectral Data 479 Spectral Angle Mapper 479 Subpixel Classification, Linear Spectral Unmixing or Spectral Mixture Analysis 480 **Continuum Removal 484** Spectroscopic Library Matching Techniques 484 Machine Learning Analysis of Hyperspectral Data 487 Decision Tree Analysis of Hyperspectral Data 487 Support Vector Machine (SVM) Analysis of Hyperspectral Data 491 Selected Indices Useful for Hyperspectral Data Analysis 491 **Reduced Simple Ratio 492** Normalized Difference Vegetation Index—NDVI 492 Hyperspectral Enhanced Vegetation Index—EVI 492 Yellowness Index—YI 492 Physiological Reflectance Index—PRI 492

XX CONTENTS

Normalized Difference Water Index—NDWI 493 Linear Red-Edge Position—REP 493 Red-Edge Vegetation Stress Index (RVSI) 494 Crop Chlorophyll Content Prediction 494 Modified Chlorophyll Absorption Ratio Index (MCARI1) 494 Chlorophyll Index 494 Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) 494 Derivative Spectroscopy 494 Narrow-Band Derivative-Based Vegetation Indices 495 Red-Edge Position Based on Derivative Ratio 496 References 496

۰.

12 Change Detection

Overview 501
Steps Required to Perform Change Detection 501
Specify the Thematic Attribute(s) or Indicator(s) of Interest 501
Specify the Change Detection Geographic Region of Interest (ROI) 501
Specify the Change Detection Time Period 502
Select an Appropriate Land-Use/Land-Cover Classification System 502
Select Hard (Crisp) and/or Soft (Fuzzy) Change Detection Logic 502
Select Per-pixel or Object-Based Change Detection (OBCD) 504
Remote Sensing System Change Detection Considerations 504
Temporal Resolution 504
Look Angle 505
Spatial Resolution 505
Spectral Resolution 505
Radiometric Resolution 506
Environmental/Developmental Considerations of Importance When Performing Change Detection 506
Atmospheric Conditions 506
Soil Moisture Conditions 507
Phenological Cycle Characteristics 508
Obscuration Considerations 511
Effects of Tidal Stage on Change Detection 511
Select the Most Appropriate Change Detection Algorithm 512
Binary Change Detection Algorithms Provide "Change/No-Change" Information 514
Analog "On-Screen" Visualization Change Detection 514
Esri, Inc., ChangeMatters® 516
Binary Change Detection Using Image Algebra 518
Image Differencing Change Detection 518
Image Algebra Band Ratioing Change Detection 519
Image Algebra Change Detection Using Statistical or Symmetric Thresholds 522
Image Algebra Change Detection Using Asymmetric Thresholds 522
Image Algebra Change Detection Using Moving Threshold Windows (MTW) 522
Multiple-Date Composite Image Change Detection 523
Supervised and Unsupervised Classification of Multiple-Date Composite Image to Detect Change 523
Principal Components Analysis (PCA) Composite Image Change Detection 523
MDA Information Systems, LLC., National Urban Change Indicator (NUCI)® 526
Continuous Change Detection and Classification (CCDC) using Landsat Data 528
Thematic "From-To" Change Detection Algorithms 529
Photogrammetric Change Detection 529
LiDARgrammetric Change Detection 531
Post-Classification Comparison Change Detection 532
Per-Pixel Post-Classification Comparison 533
OBIA Post-Classification Comparison 534

Neighborhood Correlation Image (NCI) Change Detection 538 Spectral Change Vector Analysis 542 Change Detection Using an Ancillary Data Source as Date 1 543 Change Detection Using a Binary Change Mask Applied to Date 2 544 Chi-Square Transformation Change Detection 545 **Cross-Correlation Change Detection 545** Visual On-Screen Change Detection and Digitization 546 Hurricane Hugo Example 546 Hurricane Katrina Example 548 Aral Sea Example 548 National Land Use/Cover Database of China Example 548 Atmospheric Correction for Change Detection 548 When Atmospheric Correction Is Necessary 548 When Atmospheric Correction Is Unnecessary 551 Summary 551 References 551

13 Remote Sensing-Derived Thematic Map Accuracy Assessment

Overview 557 Steps to Perform Accuracy Assessment 557 Sources of Error in Remote Sensing–Derived Thematic Maps 558 The Error Matrix 561 Training versus Ground Reference Test Information 562 Sample Size 563 Sample Size Based on Binomial Probability Theory 563 Sample Size Based on Multinomial Distribution 563 Sampling Design (Scheme) 564 Simple Random Sampling 565 Systematic Sampling 566 Stratified Random Sampling 566 Stratified Systematic Unaligned Sampling 567 **Cluster Sampling 567** Obtaining Ground Reference Information at Locations Using a Response Design 568 **Evaluation of Error Matrices 569 Descriptive Evaluation of Error Matrices 569** Discrete Multivariate Techniques Applied to the Error Matrix 570 Kappa Analysis 570 Fuzzification of the Error Matrix 571 Change Detection Map Accuracy Assessment 575 Assessing the Accuracy of the Individual Thematic Maps used in a Change Detection Study 576 Assessing the Accuracy of a "From-To" Change Detection Map 576 Response Design 576 Sampling Design 576 Analysis 577 Assessing the Accuracy of a Binary Change Detection Map 577 Assessing the Accuracy of an Object-Based Image Analysis (OBIA) Classification Map 578 Geostatistical Analysis in Support of Accuracy Assessment 578 Image Metadata and Lineage Information for Remote Sensing-Derived Products 579 Individual Image Metadata 579 Lineage of Remote Sensing–Derived Products 579 References 580

Appendix: Sources of Imagery and Other Geospatial Information

Remote Sensor Data—Public 596, 598–600 ASTER—Advanced Spaceborne Thermal Emission and Reflection Radiometer 598 AVHRR—Advanced Very High Resolution Radiometer 598 AVIRIS—Airborne/Visible Imaging Spectrometer 598 **Declassified Satellite Imagery 598** DOQ—Digital Orthophoto Quadrangles 599 Landsat—MSS, TM, ETM⁺, Landsat 8 599 LiDAR—Light Detection and Ranging 599 MODIS—Moderate Resolution Imaging Spectrometer 599 NAIP—National Agriculture Imagery Program 600 Suomi-NPOESS Preparatory Project 600 Remote Sensor Data—Commercial and International 596, 600–602 CASI-1500 600 SASI-600 600 MASI-600 600 TASI-600 600 EROS A and B 600 GeoEye-1 and -2 601 HyMap 601 **IKONOS-2 601** Indian IRS-1A, -1B, -1C and -1D 601 Indian CartoSat-1, -2, -2A, -2B, and -3 601 ResourceSat-1 and -2 601 Korean KOMPSAT1-5 601 **PICTOMETRY 601** Pleiades-1 and -2 602 QuickBird 602 RapidEye 602 Sentinel-2 602 SPOT 1-7 602 WorldView-1, -2, and -3 602

Index 603