

Dipl.-Ing. Heribert Kunz, Karlsruhe

Ein Verfahren zur Temperaturkompensation eines elektrooptischen Spannungssensors mit Quarz

Reihe 21: Elektrotechnik

Nr. **64**

Inhaltsverzeichnis

Ţ	EINFUHRUNG	1
1.1	Ziel der Arbeit	5
2	EBENE ELEKTROMAGNETISCHE WELLEN IN KRISTALLEN	7
2.1	Natürliche lineare Doppelbrechung	7
2.1.1	Der Dielektrizitätstensor	8
2.1.2	Ebene Wellen in anisotropen, nicht optisch aktiven Kristallen .	10
2.1.3	Das Indexellipsoid	14
2.2	Optische Aktivität	17
2.2.1	Der Gyrationstensor	19
2.2.2	Phasendifferenz und spezifisches Drehvermögen	22
2.2.3	Ebene Wellen in doppelbrechenden, optisch aktiven Kristallen .	23
2.2.4	Resultierender Polarisationszustand	26
2.3	Induzierte lineare Doppelbrechung	29
2.3.1	Direkter und inverser piezoelektrischer Effekt	31
2.3.2	Direkter und indirekter elektrooptischer Effekt	32
2.3.3	Das Indexellipsoid im elektrischen Feld	34
2.4	Der Temperaturkoeffizient der Brechungsindizes	35
3	QUARZ	38
3.1	Physikalische Eigenschaften	38
3.2	Wellenausbreitung in Quarz	42
3.3	Linearer elektrooptischer Effekt in Quarz	46
4	ELEKTROOPTISCHER SPANNUNGSSENSOR	54
1.1	Komponenten der optischen Übertragungsstrecke	54
4.1.1	Lichtwellenleiter	55
1.1.2	Linsen	58
4.1.3	Polarisator und Analysator	60
1.2	Labormodell eines elektrooptischen Spannungssensors	62
1.3	Optische Sendeelemente	65
1.3.1	Modenrauschen	66
1.3.2	Spektrale Eigenschaften von Infrarot-Leuchtdioden	69
1.4	Die Empfangseinheit	73
1.5	Periphere meßtechnische Ausstattung	75
1.5.1	Hochspannungskreis	76
1.5.2	Klimaschrank	76

5	PRINZIPIEN DES MESSWERT-KORREKTURVERFAHRENS	78
5.1	Dämpfungsbereinigung	79
5.2	Korrektur der Temperaturabhängigkeit des Pockelseffekts	80
5.2.1	Dämpfungsfreie optische Übertragungsstrecke	80
5.2.2	Dämpfungsbehaftete optische Übertragungsstrecke	84
5.3 ⁻	Voraussetzungen zur Realisierung höherer Meßgenauigkeiten	86
6	MESSERGEBNISSE	89
6.1	Messung des resultierenden Polarisationszustands	89
6.1.1	Festlegung des Arbeitspunkts	93
6.2	Anwendung des Meßwert-Korrekturversahrens	94
6.3	Weitere Eigenschaften des elektrooptischen Spannungssensors	100
7	SCHLUSSFOLGERUNGEN	105
	LITERATURVERZEICHNIS	107
	HÄUFIG VERWENDETE FORMELZEICHEN	116
	ANHANG	120
A.1	Eine Auswahl gebräuchlicher elektrooptischer Materialien	120
A.2	Resultierende Elliptizität für λ=632,8 nm	123
A.3	Hauptschwingungsrichtung für λ=632,8 nm	124
A.4	Resultierende Elliptizität für λ=850 nm	125
A.5	Hauptschwingungsrichtung für λ=850 nm	126