

Dipl.-Ing. Kerstin Uhde, Hamburg

Theorie und Realisierung von optoelektronischen Schaltern in Finleitungstechnik

Reihe **21**: Elektrotechnik Nr. **76**

Inhaltsverzeichnis

		Seite
1.	Einleitung	01
2.	Wellenausbreitung in einfachen Strukturen auf verlustbehaftetem Sub- strat	05
2.1	Eigenwellen einer Parallelplattenleitung auf einem zweischichtigen Halb- leitersubstrat	06
2.2	Eigenwellen eines teilweise mit Halbleitermaterial gefüllten Rechteck-hohlleiters	09
3.	Bestimmung der Eigenwellen von Finleitungen auf einem zweischichtigen Halbleitersubstrat	14
3.1	Eigenwellenanalyse von Finleitungen mit der Methode der singulären Integralgleichung	15
3.2	Eigenwellenanalyse von Finleitungen mit der Methode von Galerkin im Spektralbereich	21
3.3	Nullstellensuche in der komplexen Ebene	23
3.4	Das Verschwinden von Eigenwellen bei hoher Substratleitfähigkeit	24
3.5	Polstellenkompensation	26
4.	Numerische Auswertung der Eigenwellenanalyse	28
4.1	Vergleich der beiden Berechnungsmethoden	28
4.2	Verhalten der Grundwelle einer Finleitung auf einem zweischichtigen, verlustbehafteten Substrat	33
4.2.1	Grundwelle einer Finleitung auf einem zweischichtigen Substrat mit einer	
	isolierenden Schicht in Bereich 2	33
4.2.2	Grundwelle einer Finleitung auf einem zweischichtigen Substrat mit einer verlustbehafteten Schicht in Bereich 2	35
4.3	Höhere Eigenwellen einer Finleitung auf einem zweischichtigen, verlust- behafteten Substrat	37
4.4	Der Einfluß einer Substratleitfähigkeit auf die komplexen Eigenwellen einer Finleitung	38
5.	Analyse von Diskontinuitäten in Finleitungen	40
5.1	Streumatrix einer unsymmetrischen Diskontinuität	40

		Serte
5.2	Streumatrix einer symmetrischen Diskontinuität	44
5.3	Kompensation eines Sprunges in den Stoffeigenschaften	46
5.4	Analyse eines Finleitungsschalters auf Halbleitersubstrat	47
6.	Entwurfskriterien eines optisch steuerbaren Schalters oder Dämpfungs-	
	gliedes in Finleitungstechnik	50
6.1	Auswahl des Substratmaterials	50
6.2	Realisierung einer niedrigen Dämpfung ohne Belichtung	52
6.3	Optimierung der Dämpfung im belichteten Zustand	56
6.4	Die optischen Komponenten	57
7.	Messung der Eigenschaften von Finleitungsstrukturen im unbelichteten Zustand	59
8.	Messung der Eigenschaften von Finleitungsstrukturen im belichteten	
	Zustand	62
8.1	Meßtechnik	62
8.2	Experimentelle Ergebnisse	64
8.2.1	Dämpfung und Phasendrehung von optisch steuerbaren Finleitungs- schaltern	64
8.2.2	Vergleich von theoretischen und experimentellen Ergebnissen	68
8.2.3	Schaltzeiten von optisch steuerbaren Finleitungsschaltern	70
9.	Weitere Anwendungen von Finleitungen auf Halbleitersubstraten	72
9.1	Die Erzeugung kurzer Mikrowellenpulse mit Finleitungen	72
9.2	Realisierung von Phasenschiebern mit Finleitungen auf Halbleitersubstrat	73
10.	Zusammenfassung	74
Litera	turverzeichnis	77
Anhang		84
Tabellen		101
Bilder	:	105