Elektrochemische Verfahrenstechnik

Energietechnik - Stoffgewinnung - Bioelektrochemie

Herausgegeben von:

U. Stimming W. Lehnert

TOC

Inhalt

Vorwort

1	BRENNSTOFFZELLEN, BATTERIEN
1.1	Brennstoffzellen in der dezentralen Energieversorgung
1.2	Non-Faradaic Electrochemical Modification of Catalytic Activity27 C.G. Vayenas, Patras
1.3	Einfluß der Elektrodenporosität auf die Katalysatornutzung der Membran-Brennstoffzellenkathode
1.4	Einfluß des Brennstoffes auf die Verfahrenstechnik der PEMFC
1.5	Membran-Brennstoffzelle mit CO-haltigen Brenngasen53 V. M. Schmidt, Jülich
1.6	Elektrochemische Stromquellen mit externem Speicher
1.7	Alkalische Batterien für Elektro- und Hybridfahrzeuge
1.8	Neue Materialien für Metallhydridzellen
1.9	Verfahrenstechnische Aspekte der wiederaufladbaren Li [†] -Ionentransfer-Batterien
1.10	Analogien zwischen Dünnschichtbatterien und elektrochromen Fenstern

UNIVERSITÄTSBIBLIOTHEK HANNOVER TECHNISCHE

TECHNISCHE INFORMATIONSBIBLIOTHEK

1.11	Pseudokapazitäten an vorkompaktierten Rußelektroden	119
1.12	Temperaturabhängige Leistungsdaten einer Membran-Brennstoffzelle unter Verwendung von H ₂ / CO als Brenngas	131
1.13	Membranbrennstoffzellen - Systemdesign und Testbetrieb A. Schuler, G. Schaumberg, A. Heinzel, W. Faas, W. Koch, Freiburg; K. Ledjeff-Hey, V. Formanski, Duisburg	133
1.14	Elektrochemische Untersuchungen an Elektroden für die Membranbrennstoffzelle	137
1.15	Physikalische Untersuchungen an Elektroden für die Membranbrennstoffzelle	139
1.16	Katalyse der Sauerstoffreduktion an SOFC-Kathoden	141
1.17	Gemischtleitende La _{1-x} Ca _x CoO _{3-,} - und La _{1-x} Sr _x Co _{1-y} Fe _y O _{3-,} - Elektroden: Präparation und Messung der Sauerstoffionenleitfähigkeit mit Mikrokontakten	143
1.18	Entwicklung einer Direkt-Methanol-Brennstoffzelle V. Tegeder, G. Luft, W. Preidel, Erlangen	145
1.19	Entwicklung einer Brennstoffzelle mit Tetracarbonylferrat als oxidierbarem Brennstoff	147
1.20	Dynamische Simulation der Reaktions- und Transportprozesse in Gasdiffusionselektroden dargestellt am Beispiel der Sauerstoffreduktion in Brennstoffzellen	151

2.1	Modellierung und Design elektrochemischer Reaktoren
2	MODELLING UND ZELLDESIGN
1.29	Materialentwicklung für Superkondensatoren auf der Basis elektronisch leitender Oxidkeramiken
1.28	Festkörperchemische Modifizierung von γ-MnO ₂ Phasen zur Verbesserung der Wiederaufladbarkeit von MnO ₂ –Kathodenmassen
1.27	Elektrochemie dotierter Lithium-Mangan-Spinelle vom Typ LiM _x Mn _{2-x} O ₄
1.26	Aufklärung von Elektrodenprozessen in einer neuen Lithium- Sekundärbatterie
1.25	Nickel/Metallhydrid Batterie in bipolarer Bauweise
1.24	Wege zur gasdichten Nickel/Zink Batterie
1.23	Pulsmessungen zur Trennung der während der Sauerstoff- reduktion an Platin in saurer Lösung auftretenden Prozesse157 Ch. Fricke, U. König, J.W. Schultze, Düsseldorf
1.22	Elektrokatalytische Eigenschaften definierter Metallcluster
1.21	Eisen-Phthalocyanin als Katalysator für die Sauerstoffreduktion an Gasdiffusionselektroden für Brennstoffzellen - Einfluß der Katalysatorvorbehandlung auf die Gesamtaktivität der Elektrode

2.2	Models and Design in Electrochemical Processes
2.3	Simulation von Hochtemperatur-Brennstoffzellen
2.4	Elektrochemische Reaktoren für die direkte und indirekte Abgasreinigung
2.5	Modelling and cell design for metal deposition processes
2.6	Mathematische Modellierung und Simulation des Wärmedurchganges durch Elektrolysemembranen
2.7	Scale up bei elektrochemischen Beschichtungen
2.8	Mathematische Modellierung und Simulation der partiellen Beschichtung bei der Stahlbandverzinkung
2.9	Modellierung des thermischen Verhaltens von ZEBRA- Hochtemperaturbatterien
3	CHLORALKALI-ELEKTROLYSEN UND VERWANDTE PROZESSE
3.1	20 Jahre Entwicklung einer bipolaren Membranzelle für die Alkalichlorid-Elektrolyse - vom Labor bis zur weltweiten Anwendung
3.2	Chloralkali-Elektrolyse nach dem Amalgamverfahren - kein altes Eisen

3.3	Der Einfluß der Anodenstruktur auf die Spannung in den Membranzellen der Chloralkalielektrolyse	263
3.4	Wege zu hohen Stromdichten bei niedrigem Energiever- brauch - Aspekte zur weiteren Optimierung der Membranelektrolysezelle	275
3.5	Neue Erkenntnisse bei der technischen Herstellung von Perfluoralkylsulfonylfluoriden durch elektrochemische Perfluorierung	285
4	ANORGANISCHE ELEKTROLYSEN, WASSERELEKTROLYSE, ENERGIEEINSPARUNG IN ELEKTROCHEMISCHEN PROZESSEN	
4.1	Chancen und Grenzen für neue elektrochemische Prozesse in der chemischen Industrie	 291
4.2	Zur Modul- und Verfahrenstechnik der alkalischen Wasserelektrolyse	301
4.3	Verfahrenstechnik der modernen, alkalischen Druckwasserelektrolyse	315
4.4	Hochleistungselektroden für die fortschrittliche alkalische Wasserelektrolyse	335
4.5	Regulierung der Wasserelektrolyse bei der kathodischen Elektrotauchlackierung (kETL)	345

4.6	zur Energieeinsparung bei der Natriumsulfat-Elektrolyse
4.7	Energiesparende Maßnahmen in elektrochemischen Prozessen
4.8	Development of energy saving lead anodes for metal winning electrolysis
4.9	Organische Elektrosynthese in der Kapillarspaltzelle
4.10	Entwicklung von Verfahren zur elektrochemischen Sanierung kontaminierter Böden411 D. Rahner, H. Grünzig, G. Ludwig, W. Plieth, Dresden
4.11	Electric energy savings through NEMCA effect
4.12	Oxidkeramische Anoden in wasserfreier Flußsäure
4.13	Elektrochemische Phosphinylierung zur Synthese von P(III)- Liganden429 P. Brungs, H. Millauer, Frankfurt am Main
4.14	Modifizierte Elektrodenoberflächen durch geordnete redoxaktive Schichten auf Basis von Oxadiazolamiden
4.15	Electrochemical Oxidation and Antibacterial Properties of Phenolic Components of Essential Oils
4.16	Einsatz eines Kalanderwalzwerkes zur reproduzierbaren Herstellung von porösen Elektroden auf Kohlenstoffbasis
4.17	Gasdiffusionselektroden für die Elektrolyse

4.18	Beschleunigung schneller Redoxreaktionen durch upd-modifizierte Elektroden?
4.19	Elektrochemische und mikrogravimetrische Untersuchungen zur Kupferkorrosion in Dimcarb
4.20	Reinstwasser durch ein elektrochemisches Verfahren443 H. Neumeister, R. Flucht, L. Fürst, H.M. Verbeek, Jülich
4.21	Elektrochemische Herstellung und Charakterisierung von Magnesium- und Magnesium- Aluminium-Legierungsanoden für Batteriezwecke
5	SENSORIK UND BIOELEKTROCHEMIE
5.1	Elektrochemische Sensoren und Bioelektrochemie - aktuelle Entwicklungen und Bedeutung für elektrochemische Verfahren
5.2	Mehrfachsensorik zum Nachweis und zur Verhinderung von mikrobiologisch beeinflußter Korrosion an metallischen Werkstoffen
5.3	Chemo- und Biosensoren in der Verfahrenstechnik
5.4	Entwicklung eines kontinuierlichen bioelektrochemischen Verfahrens: Der elektrochemische Enzymmembranreaktor
5.5	Chemisch metallisierte mikroporöse oder ionenaustauschende Membranen

5.6	Potentialgesteuerte Chromatographie mittels Festbettelektroden zur Auftrennung von Biomolekülen	497
5.7	Entwicklung eines Meßsystems zur Bestimmung der aktuellen Anzahl und des Aktivitätszustandes von Mikroorganismen in Fermentationssystemen	499
5.8	Optischer Chlorgassensor auf der Basis eines immobilisierten Redoxindikators	503

Autorenverzeichnis

Stichwortverzeichnis