Carlo Maria Becchi · Massimo D'Elia

Introduction to the Basic Concepts of Modern Physics

Special Relativity, Quantum and Statistical Physics

Third Edition

Contents

1	Intr	oduction to Special Relativity	1
	1.1	From Ether Theory to the Postulates of Relativity	3
	1.2	Lorentz Transformations and Their Main Consequences	7
		1.2.1 Transformation Laws for Velocities	11
		1.2.2 Invariant Quantities and Space-Time Geometry	11
		1.2.3 Faster Than Light?	16
		1.2.4 New Phenomena: Time Dilation	
		and Length Contraction	16
		1.2.5 On the Concept of Proper Time	18
	1.3	Covariant Formulation of Relativity	19
		1.3.1 Covariant Formulation of the Laws of Nature	23
	1.4	Relativistic Kinematics	23
		1.4.1 Four-Velocity and Four-Momentum	25
		1.4.2 The Lagrangian of a Free Relativistic Particle	27
		1.4.3 Energy-Momentum Conservation	
		in Relativistic Processes	32
	1.5	Covariant Formulation of Electromagnetism	35
		1.5.1 Relativistic Doppler Effect	40
	Prob	olems	42
2	Intr	oduction to Quantum Physics	67
	2.1	The Photoelectric Effect	67
	2.2	Bohr's Quantum Theory	72
	2.3	de Broglie's Interpretation	75
	2.4	Schrödinger's Equation	81
		2.4.1 The Uncertainty Principle	85
		2.4.2 The Speed of Waves	89
		2.4.3 The Collective Interpretation of de Broglie's Waves	90

	2.5	The Potential Barrier	91		
		2.5.1 Mathematical Interlude: Differential Equations			
		with Discontinuous Coefficients.	93		
		2.5.2 The Square Barrier.	96		
	2.6	Quantum Wells and Energy Levels	103		
	2.7	The Harmonic Oscillator	108		
	2.8	Periodic Potentials and Band Spectra	115		
	2.9	The Schrödinger Equation in a Central Potential	120		
		2.9.1 A Piecewise Constant Potential			
		and the Free Particle Case	128		
		2.9.2 The Coulomb Potential	131		
		2.9.3 The Isotropic Harmonic Oscillator	134		
		2.9.4 The Scattering Solutions	137		
	Prob	blems	141		
3	Intr	oduction to the Statistical Theory of Matter	167		
	3.1	Thermal Equilibrium by Gibbs' Method	171		
		3.1.1 Einstein's Crystal.	174		
		3.1.2 The Particle in a Box with Reflecting Walls	176		
	3.2	The Pressure and the Equation of State	177		
	3.3	A Three Level System	179		
	3.4	The Grand Canonical Ensemble and the Perfect Quantum Gas	183		
		3.4.1 The Perfect Fermionic Gas	185		
		3.4.2 The Perfect Bosonic Gas	194		
		3.4.3 The Photonic Gas and the Black Body Radiation	197		
	3.5	Gases in the Classical Limit	199		
	3.6	Entropy and Thermodynamics	204		
	3.7	The Thermodynamic Potentials	207		
		3.7.1 Phase Transitions	212		
	Prob	olems	217		
Index					