Yilei Li

## Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy

Doctoral Thesis accepted by Columbia University, New York, NY, USA



## Contents

| 1 | Introduction and Background                               |                                                        |        |  |  |
|---|-----------------------------------------------------------|--------------------------------------------------------|--------|--|--|
|   | 1.1                                                       | Introduction.                                          | 1<br>1 |  |  |
|   | 1.2                                                       | Overview of Optical Spectroscopy Methods               | 2      |  |  |
|   | 1.3                                                       | Optics of Graphene                                     | 3      |  |  |
|   | 1.4                                                       | Optics of Monolayer Transition Metal Dichalcogenides   | 4      |  |  |
|   |                                                           | prences                                                | 6      |  |  |
| 2 | Intrinsic Doping Dependence of Raman 2D Mode in Graphene: |                                                        |        |  |  |
| - | Signatures of Electron–Electron Interaction               |                                                        |        |  |  |
|   | 2.1                                                       | Introduction                                           | 9      |  |  |
|   | 2.1                                                       | Experimental Details for Raman Measurement             | 9      |  |  |
|   | 2.2                                                       | -                                                      | 10     |  |  |
|   | 2.3                                                       | of Ultraclean Graphene on h-BN                         | 10     |  |  |
|   | 2.3                                                       | Intrinsic Doping Dependence of the Raman G Mode:       |        |  |  |
|   | ~ (                                                       | Signatures of <i>e</i> – <i>p</i> Interactions         | 11     |  |  |
|   | 2.4                                                       | Intrinsic Doping Dependence of the Raman 2D Mode:      |        |  |  |
|   | _                                                         | Signatures of <i>e</i> - <i>e</i> Interactions         | 12     |  |  |
|   | 2.5                                                       | Conclusion                                             | 15     |  |  |
|   | Refe                                                      | erences                                                | 16     |  |  |
| 3 | Coupling of Strongly Localized Graphene Plasmons          |                                                        |        |  |  |
|   | to N                                                      | Iolecular Vibrations                                   | 19     |  |  |
|   | 3.1                                                       | Introduction                                           | 19     |  |  |
|   | 3.2                                                       | Sample Preparation and Experiment Setup for Mid-IR     |        |  |  |
|   |                                                           | Transmission Spectroscopy                              | 20     |  |  |
|   | 3.3                                                       | Determination of the Out-of-Plane Confinement          |        |  |  |
|   |                                                           | of Graphene Plasmon                                    | 21     |  |  |
|   | 3.4                                                       | Hybridized Plasmon–Phonon Mode and Enhanced IR Sensing | 22     |  |  |
|   | 3.5                                                       | Finite Difference Time Domain Simulation               |        |  |  |
|   |                                                           | and a Phenomenological Model                           | 23     |  |  |
|   | 3.6                                                       | Conclusion                                             | 26     |  |  |
|   |                                                           | rences                                                 | 20     |  |  |
|   | ACCIC                                                     | 1 • 11 • 0 · · · · · · · · · · · · · · · · · ·         |        |  |  |

| 4 | Diele                                                         | ectric Response of a Thin Sheet                                             | 29  |  |  |
|---|---------------------------------------------------------------|-----------------------------------------------------------------------------|-----|--|--|
|   | 4.1                                                           | Introduction to the Dielectric Response of a Material                       | 29  |  |  |
|   | 4.2                                                           | Linear Dielectric Response                                                  | 29  |  |  |
|   | 4.3                                                           | Nonlinear Dielectric Response                                               | 30  |  |  |
|   | 4.4                                                           | Models for the Dielectric Response of a Thin Film                           | 30  |  |  |
|   | Refe                                                          | rences                                                                      | 32  |  |  |
| 5 | Measurement of the Optical Dielectric Function                |                                                                             |     |  |  |
|   | of M                                                          | Ionolayer Transition Metal Dichalcogenides:                                 |     |  |  |
|   | MoS                                                           | b <sub>2</sub> , MoSe <sub>2</sub> , WS <sub>2</sub> , and WSe <sub>2</sub> | 33  |  |  |
|   | 5.1                                                           | Introduction                                                                | 33  |  |  |
|   | 5.2                                                           | Sample Preparation for Reflectance Measurement                              | 34  |  |  |
|   | 5.3                                                           | Measurement of Reflectance of the Monolayer TMDCs                           | 34  |  |  |
|   | 5.4                                                           | Determination of the Dielectric Function from Reflectance                   |     |  |  |
|   |                                                               | Spectrum Using Kramers-Kronig Constrained Analysis                          | 36  |  |  |
|   | 5.5                                                           | Surface Conductivity and Absorbance                                         | 37  |  |  |
|   | 5.6                                                           | Extraction of the A and B Peaks Splitting                                   | 37  |  |  |
|   | 5.7                                                           | Comparison of the Monolayer and Bulk Dielectric Function                    | 39  |  |  |
|   | 5.8                                                           | Conclusion                                                                  | 41  |  |  |
|   | Refe                                                          | rences                                                                      | 41  |  |  |
| 6 | Моэ                                                           | surement of the Second-Order Nonlinear Susceptibility                       |     |  |  |
| U | and Probing Symmetry Properties of Few-Layer MoS <sub>2</sub> |                                                                             |     |  |  |
|   |                                                               | h-BN by Optical Second-Harmonic Generation                                  | 45  |  |  |
|   | 6.1                                                           | Introduction                                                                | 45  |  |  |
|   | 6.2                                                           | Experimental Setup for Optical SHG Measurement                              | 47  |  |  |
|   | 6.3                                                           | Probing the Absence of Inversion Symmetry and the Crystal                   | • • |  |  |
|   | 0.5                                                           | Rotational Symmetry by Polarization Resolved SHG                            | 48  |  |  |
|   | 6.4                                                           | Measurement of the Second-Order Nonlinear Susceptibility                    | 49  |  |  |
|   | 6.5                                                           | Probing Inversion Symmetry Breaking by SHG Intensity                        | 50  |  |  |
|   | 6.6                                                           | SHG as an Optical Tool for the Characterization                             | 20  |  |  |
|   | 0.0                                                           | of Atomically Thin Layers                                                   | 52  |  |  |
|   | 6.7                                                           | Conclusion                                                                  | 52  |  |  |
|   |                                                               | erences                                                                     | 53  |  |  |
|   |                                                               |                                                                             |     |  |  |
| 7 |                                                               | ey Splitting and Polarization by Zeeman Effect                              |     |  |  |
|   |                                                               | Ionolayer MoSe <sub>2</sub>                                                 | 55  |  |  |
|   | 7.1                                                           | Introduction                                                                | 55  |  |  |
|   | 7.2                                                           | Experimental Setup for Valley Selective Magneto-PL                          |     |  |  |
|   | _                                                             | Spectroscopy                                                                | 56  |  |  |
|   | 7.3                                                           | Demonstration of Valleys Splitting and Polarization                         | 56  |  |  |
|   | 7.4                                                           | Determination of the Trion Configuration                                    | 59  |  |  |
|   | 7.5                                                           | Zeeman Effect in the High Doping Regime                                     | 60  |  |  |
|   | 7.6                                                           | Conclusion                                                                  | 62  |  |  |
|   |                                                               | erences                                                                     | 63  |  |  |
| 8 | Con                                                           | clusion and Prospect                                                        | 65  |  |  |
| C | urricu                                                        | ılum Vitae                                                                  | 67  |  |  |