Sven Banisch

Markov Chain Aggregation for Agent-Based Models

Contents

1	Introduction					
	1.1	1 Complex Multi-Level Systems				
	1.2	Microsimulation and Agent-Based Models				
	1.3	Markov Chain Description of Agent-Based Models				
	1.4	Markov Chain Aggregation	5			
	1.5	Micro-Macro Transition in the Voter Model	7			
	1.6	Outline	8			
	References					
2	Background and Concepts					
	2.1	Agent-Based and Related Models	11			
	2.2	Markov Chain Formalization of Agent-Based Models	14			
		2.2.1 A Very Short Introduction to the Markov Chain Setting	10			
	2.3	Lumpability and State Space Aggregation	17			
		2.3.1 Strong Lumpability	18			
		2.3.2 Weak Lumpability	20			
		2.3.3 Nearly Lumpable and Non-lumpable Aggregation	20			
		2.3.4 Aggregation in Dynamical Systems	2			
	2.4	The Information-Theoretic Perspective				
	2.5	Motivation: Towards a Markov Chain Theory				
		of Aggregation for Agent-Based Models	24			
		2.5.1 Bridging a Gap	24			
		2.5.2 The Micro-Macro Link	2:			
		2.5.3 Computational Emergence and Aggregativity	20			
	Ref	erences	27			
3	Age	Agent-Based Models as Markov Chains				
	3.1	Basic Ingredients of Agent-Based Models	3:			
		3.1.1 Agents as Elementary Units	3			
		3.1.2 The Environment	3			
		3.1.3 Interaction Rules	3			
		3.1.4 Iteration Process	- 30			

	3.2	The Micro Level	40
		3.2.1 The Grammar of an Agent-Based Model	40
		3.2.2 From Functional Graphs to Markov Chains	43
		3.2.3 Single-Step Dynamics and Random Walks	
		on Regular Graphs	44
	3.3	Macrodynamics, Projected Systems and Observables	46
	0.0	3.3.1 Micro and Macro in Agent-Based Models	46
		3.3.2 Observables Partitions and Projected Systems	47
		3.3.3 Lumpability and Symmetry	48
	34	From Automorphisms to Macro Chains	50
	3.5	Summary and Discussion	54
	J.J Refe	summary and Discussion	55
4	The	Voter Model with Homogeneous Mixing	57
	4.1	Opinion Dynamics and Projected Systems	57
		4.1.1 The Macro Dynamics of the Binary Voter Model	58
		4.1.2 Transient Macro Dynamics	61
		4.1.3 Exit Probabilities	68
		4.1.4 Macrodynamics of the General Voter Model	69
		4.1.5 Further Reduction	70
	4.2	Bounded Confidence and the Emergence of Opinion	
		Polarization	71
		4.2.1 The Unconstrained Case	72
		4.2.2 Bounded Confidence	73
		4.2.3 Non-lumpability for Further Reduction	76
		4.2.4 Transient Behavior with Bounded Confidence	77
	4.3	Simple Generalizations	80
	4.4	Summary and Discussion	81
	Refe	Prences	82
_			~
5	Fro	m Network Symmetries to Markov Projections	83
	5.1	Interaction Heterogeneity and Projection Refinement	84
	5.2	Social Structure at the Micro Level	86
	5.3	Markovian Aggregation	88
		5.3.1 Macroscopic Equivalence	88
		5.3.2 The Voter Model	88
		5.3.3 Single-Step Dynamics	90
	5.4	The Two-Community Model	90
		5.4.1 Model	90
		5.4.2 Markov Projection	91
		5.4.3 Convergence Times	93
		5.4.4 Quasi-Stationary Distribution	95
	5.5	On the Role of Peer-to-Peer Communication	
		in an Opinion Model with Leader	96
		5.5.1 Model	97
		5.5.2 Markov Projection	97
			~ *

		5.5.3 Simple Observations	99			
		5.5.4 Influence of the Leader	99			
		5.5.5 Convergence Times	100			
		5.5.6 Transient Behavior	102			
		5.5.7 Alternative Interpretation	104			
	5.6	The Ring	104			
	2.0	5.6.1 Strongly Lumpable Partition	104			
	5.7	Discussion	106			
	Refe	rences	107			
6	App	lication to the Contrarian Voter Model	109			
	6.1	Non-conformity Opinion Models				
	6.2	The CVM Micro Chain	111			
		6.2.1 Model	111			
		6.2.2 Micro Dynamics	111			
	6.3	Homogeneous Mixing	113			
		6.3.1 Macro Chain	113			
		6.3.2 Stationary Dynamics for Homogeneous Mixing	115			
		6.3.3 Rate of Majority-Minority Switching	118			
	6.4	Two-Community Model	120			
		6.4.1 Meso Chain	120			
		6.4.2 Stationary Dynamics on the Two-Community Graph	122			
	6.5	Discussion	124			
	Refe	erences	126			
7	Info	rmation-Theoretic Measures for the Non-Markovian Case	127			
	7.1	Lumpability and the Notion of Closure	128			
		7.1.1 Information Measures for Multi-Level Systems	128			
		7.1.2 Lumpability and Closure	131			
	7.2	Network Dynamics from the Macro Perspective	133			
		7.2.1 Full Aggregation	133			
		7.2.2 Network Influence on the Stationary Dynamics	135			
		7.2.3 The Two-Community Case	136			
	7.3	Non-Markovianity of the Two-Community CVM	137			
		7.3.1 From Micro to Meso, and from Meso to Macro	137			
		7.3.2 Why Lumpability Fails	139			
		7.3.3 Stationarity and Aggregation	140			
		7.3.4 Why Weak Lumpability Fails	143			
	7.4	Closure Measures for the Two-Community CVM	145			
		7.4.1 Computation of the Markovianity Measure	145			
		7.4.2 Computation of Informational Flow	148			
	7.5	Results	150			
	7.6	Summary and Discussion	153			
	Refe	Prences	154			

8	Overlapping Versus Non-overlapping Generations			157		
	8.1	uction	157			
	8.2	From	Adaptive Dynamics to Cluster Formation	161		
		8.2.1	Adaptive Walks on Fitness Landscapes	161		
		8.2.2	Sympatric Speciation	163		
		8.2.3	Cluster Formation in Opinion Dynamics	165		
		8.2.4	Overlapping Versus Non-overlapping Generations	166		
		8.2.5	Local Versus Non-local Replacement	167		
		8.2.6	(Non-)adaptiveness of Local Replacement	168		
	8.3	Probal	bilistic Analysis of a Minimal Model	168		
		8.3.1	A Minimal Model	169		
		8.3.2	Transition Rates	169		
		8.3.3	Random Mating	171		
		8.3.4	Assortative Mating	172		
		8.3.5	Two-Peaked Fitness Landscape	173		
	8.4	Summ	ary and Discussion	173		
	Refe	erences.		175		
9	Aggregation and Emergence: A Synthesis			177		
	9.1	The C	omputational View on Emergence	177		
	9.2	Challe	enging Definitions of Weak Emergence	179		
		9.2.1	Unavoidability of Simulations	179		
		9.2.2	Computational Incompressibility	180		
	9.3	From	Computational Incompressibility to Non-aggregativity	183		
	Refe	erences.		185		
10	Con	clusion		187		
**	Refe	erences		194		