Yu. I. Dimitrienko

Thermomechanics of Composite Structures under High Temperatures

Contents

1	High	-Temper	ature Environment and Composite Materials	1			
	1.1	Main T	ypes of High-Temperature Effects on Composite				
		Materia	als	1			
		1.1.1	Aerodynamical Heating	2			
		1.1.2	Gas-Dynamical Heating	10			
		1.1.3	Heating in Energetic Systems	12			
		1.1.4	Technological Heating	14			
		1.1.5	Action of Fire	15			
	1.2	Ablatio	on Processes in Composites	17			
		1.2.1	Classification of Ablation Processes	18			
		1.2.2	Volumetric Ablation	19			
		1.2.3	Surface Ablation	20			
	1.3	Phenon	nena in Composite Materials				
		Under	High Temperatures	21			
	1.4	A Phys	sical Model of Ablative Composite	24			
	Refe	rences		25			
2	General Equations of Multiphase Continuum Mechanics						
	for A	Ablative	Composites	31			
	2.1	Conser	vation Laws	31			
		2.1.1	Main Concepts of Tensor Analysis	31			
		2.1.2	System of Conservation Laws for Phases	34			
		2.1.3	Relationships on a Surface of a Strong				
			Discontinuity	35			
	2.2	Constit	tutive Relations for Phases of Ablative Composites	36			
		2.2.1	The Fourier Law	36			
		2.2.2	General Thermodynamical Identity	37			
		2.2.3	Natural Configurations of Phases	38			
		2.2.4	General Form of Constitutive Relations	40			

	2.3	Relations	s at the Phase Interface	43
		2.3.1	Main Equations	43
		2.3.2	Classification of Phase Interfaces	44
		2.3.3	Consequences of General Equations	45
		2.3.4	Tensor of Chemical Potential	46
	2.4	Equation	of Phase Transformation Rate	47
	2.5	Infinitesi	mal Strains of Solid Phases	49
		2.5.1	Main Assumptions	49
		2.5.2	Constitutive Relations	50
		2.5.3	Quasistatic Processes.	53
		2.5.4	Conservation Equations	53
		2.5.5	Conditions on the Phase Interface	54
		2.5.6	Rate of the Phase Transformation	56
	Refere	ences		58
3	Math	ematical	Model of Ablative Composites	61
-	3.1	Main As	sumptions	61
	3.2	Method	of Asymptotic Averaging	64
		3.2.1	Boundary Conditions	64
		3.2.2	Initial Conditions	66
		3.2.3	Statement of Thermomechanics Problem	
			for Ablative Composites	66
		3.2.4	Asymptotic Expansions	67
		3.2.5	Zero-Level Local Problem	
			over the Periodicity Cell	67
		3.2.6	First-Level Local Problems	
			Over the Periodicity Cell.	70
	3.3	Averagin	ng of Processes in Ablative Composites	71
		3.3.1	Averaged Equations	71
		3.3.2	Averaged Constitutive Relations	72
		3.3.3	Statement of the Averaged Problem	73
	3.4	Analysis	of Asymptotic Averaging Method	74
	3.5	Statemen	nt of Problems for Composites with Ablative Matrix	
		and Fibr	es	75
		3.5.1	Main Equations	75
		3.5.2	Motion Equation for the Ablation Surface Σ	77
		3.5.3	Constitutive Relations	77
		3.5.4	Boundary and Initial Conditions	78
		3.5.5	Statement of the Problem in Terms of Stresses	80
	Refer	ences		81

4	Beha	vior of I	Matrices at High Temperatures	83
	4.1	Varyin	g Density of Matrices at High Temperatures	83
		4.1.1	Determination of a Volumetric Ablation Rate	
			of Matrices	83
		4.1.2	Experimental Data	85
		4.1.3	Pore Pressure	88
	4.2	Effectiv	ve Elastic Properties of Ablative Matrices at High	
		Temper	ratures	89
		4.2.1	Solving the Mechanical Local Problem	
			Over a Periodicity Cell	89
		4.2.2	Effective Constitutive Relations	93
		4.2.3	Experimental Investigation of Changing Elastic	
			Properties of Matrices Under Heating	94
	4.3	Heat E	xpansion/Shrinkage of Matrices	
		at High	Temperatures	98
	4.4	Strengt	th Properties of Matrices at High Temperatures	100
		4.4.1	Microstresses in Phases	100
		4.4.2	Failure Criterion for Matrices	
			at High Temperatures	101
		4.4.3	Experimental Investigation of Strength Properties	
			of Matrices Under High Temperatures.	103
	4.5	Heat C	onductivity and Heat Capacity of Matrices at High	
		Temper	ratures	109
		4.5.1	Solving the Local Problem of Heat Conduction	109
		4.5.2	Experimental Data	110
		4.5.3	Heat Capacity	111
	4.6	Gas Pe	rmeability of Matrices at High Temperatures	111
		4.6.1	Solving the Local Problem of Gas Dynamics	111
	Refe	rences		115
~	D •			117
3	Kein	Iorcing I	Flores Under High Temperatures	117
	5.1		ing Phase Composition of Fibres Under Heating	11/
	5.2	Heat C	onductivity and Heat Capacity of Ablative Fibres	120
	5.3	Varying	g Elastic Properties of Fibres Under Heating	122
	5.4	Heat D		124
	5.5	Strengt	In Properties of Fibres Under High Temperatures	125
		5.5.1	Strength of Idealized Fibre.	125
		5.5.2	Model of a Thread of Fibres with Defects	125
	5.6 D	Short F	abres and Dispersed Particles	132
	Refe	rences	• • • • • • • • • • • • • • • • • • • •	132

6	Unidi	rectional	Composites Under High Temperatures	135			
	6.1	Structura	I Model of Unidirectional Composites	135			
		6.1.1	Peculiarities of Unidirectional Composites				
			Under High Temperatures	135			
		6.1.2	Multilevel Internal Structure of Unidirectional				
			Composite	136			
	6.2	Model o	f Microcomposite	138			
		6.2.1	Elastic Properties	138			
		6.2.2	Heat Deformations and Phase Interactions	141			
		6.2.3	Microstresses	142			
		6.2.4	Heat Conductivity.	143			
	6.3	Thermo-	Elastic Characteristics and Heat Conductivity				
		of Unidi	rectional Composites	144			
		6.3.1	Theoretical Relations	144			
		6.3.2	Experimental Data	144			
	6.4	Strength	Properties of Unidirectional Composite Under High				
		Tempera	utures	147			
		6.4.1	Thermal Strength of Unidirectional Composite				
			in Ension Along Reinforcing Direction	148			
		6.4.2	Experimental Data	153			
		6.4.3	Thermal Strength of Unidirectional Composite				
			in Compression Along Reinforcing Direction	156			
		6.4.4	Thermal Strength of Unidirectional Composite				
			in Transverse Tension/Compression and Shear	158			
		6.4.5	Thermal Microstresses and Microcracking	159			
		6.4.6	Thermal Strength of Unidirectional Composite				
			in Longitudinal Shear	161			
		6.4.7	Multiaxial Loading of Unidirectional Composite	163			
	6.5	Heat Ex	pansion/Shrinkage	164			
	Refe	erences					
7	Text	ile Ablati	ve Composite Materials	167			
,	7.1	Model of a Structure of Ablative Textile Composite					
	/.1	Material		167			
	72	Model (of a Laver with Curved Threads	169			
		721	Elastic Properties	169			
		7.2.2	Heat Deformations and Coefficients of Phase	107			
		,.2.2	Interaction	172			
		7.2.3	Microstresses	172			
		7.2.4	Heat Conductivity of Lavers with Curved Threads	174			
	7.3	Constitu	tive Relations for Ablative Textile Composites	175			
	7.4	Thermo	-Elastic Moduli and Heat Conductivity Coefficients	2.0			
		of Texti	le Composites.	176			
		7.4.1	Theoretical Results	176			
		7.4.2	Experimental Data	178			

	7.5	Heat Deformations	31
		7.5.1 Theoretical Relations	51
		7.5.2 Experimental Data 18	32
	7.6	Coefficients of Phase Interaction	34
	7.7	Thermal Strength	35
		7.7.1 Destruction by Types (A_{α}) and (B_{α})	37
		7.7.2 Destruction by the Types (C) and (D)	12
		7.7.3 Experimental Data 19	13
	7.8	Thermal Properties of Textile Composites 19	14
		7.8.1 Heat Conductivity	14
		7.8.2 Density	6
	7.9	Gas Permeability	19
	Refe	erences	Ю
8	Com	posites Reinforced by Dispersed Particles)1
	8.1	Model of the Composite)1
	8.2	Thermo-Elastic Characteristics	12
		8.2.1 One-Dimensional Model 20	12
		8.2.2 Three-Dimensional Relations)5
	8.3	Strength	6
		8.3.1 Strength in Tension	6
		8.3.2 Strength in Compression	17
	8.4	Thermal Properties	18
		8.4.1 Heat Conductivity	8
		8.4.2 Density and Heat Capacity	19
		8.4.3 Gas Permeability 20	19
	Refe	erences	.1
9	Pher	nomena in Composite Materials Caused	
	by G	Gradient Heating	3
	9.1	Internal Heat-Mass-Transfer and Stresses in Ablative	
		Composites Under Gradient Heating 21	4
		9.1.1 Problem Statement and Solution 21	4
		9.1.2 Computed Results	5
	9.2	Plane Problems of Thermomechanics for Composites	
		Under High Temperatures 21	9
	9.3	Heat Deformations, Stresses and Load-Bearing Capacity	
		of a Composite Plate Under Gradient Heating 22	3
		9.3.1 Problem Statement	3
		9.3.2 Other Cases of Loading a Plate	7
		9.3.3 Computed Results	8
	Refe	erences	3

10	Linea	r Ablatic	on of Composites	235
	10.1	Main Ty	pes of Linear Ablation of Composites	236
	10.2	Combus	tion Rate	236
		10.2.1	General Equations	236
		10.2.2	Combustion Rate of a Composite in Air Flow	239
		10.2.3	Computed Results	240
	10.3	Sublima	tion Rate	241
	10.4	Thermon	mechanical Erosion Rate	243
		10.4.1	General Relationships	243
		10.4.2	Isotropic Composites	245
		10.4.3	Transversally Isotropic Composites	250
		10.4.4	Textile Composites	253
		10.4.5	Computed Results.	254
	10.5	Melting	Rate	255
	10.6	Compar	ison of Theoretical and Experimental Results	256
		10.6.1	Effect of a Matrix Type on the Rate of Linear	
			Ablation of Composites	257
		10.6.2	Effect of a Fibre Type on the Rate of Linear	
			Ablation of Composites	258
		10.6.3	Effect of a Pressure Head on the Rate of Linear	
			Ablation of Composites	259
		10.6.4	Particle-Reinforced Composites	261
	10.7	Heat Ba	lance on Ablative Surface	262
	10.8	Criteria	of Efficiency of Composites	263
	Refe	rences	••••••	266
11	Ther	mal Stre	sses in Composite Structures Under High	
	Tem	peratures	8	269
	11.1	Axisym	metric Problems of Thermomechanics	
		for Con	nposites Under High Temperatures	269
		11.1.1	Basic Equations	269
		11.1.2	Constitutive Relations	270
		11.1.3	Functions of Stresses.	272
		11.1.4	Boundary Conditions	272
		11.1.5	Statement of the Axisymmetric Problem in Terms	070
			of Stresses	213
		11.1.6	The Problem Statement in Terms	070
			of Displacements	273
	11.2	Therma	I Stresses in Composite Structures of Heat-Energetic	075
		System		215
		11.2.1	External Shell of the Inlet of STJE	213
		11.2.2	A Shell of a Central Body of STJE Inlet	283

Contents

	11.3	Thermal	Stresses in Thermoprotective Structures	
		Under C	Bas-Dynamical Heating	287
		11.3.1	The Problem Statement	287
		11.3.2	Numerical Analysis of the Problem	290
	11.4	Thermal	Stresses in Thermoprotective Structures	
		Under A	Aerodynamical Heating	294
		11.4.1	The Problem Statement	294
		11.4.2	Computed Results	296
	11.5	Thermal	Stresses in Composites Under Local	
		Technol	ogical Heating	301
		11.5.1	Statement of the Problem	302
		11.5.2	Computed Results	302
	Refer	ences		306
12	Mech	anics of	Composite Thin-Walled Shells Under High	• • • •
	Temp	peratures		309
	12.1	General	Equations for Thin-Walled Ablative Shells	210
		Under H	ligh Temperatures	210
		12.1.1	Constitutive Polations of Ablative Composites	212
		12.1.2	Roundary and Initial Conditions	312
	122	12.1.5 Main A	Boundary and Initial Conditions	317
	12.2	Peculiar	ities of the Theory of Composite Shells	517
	12.5	Under H	ligh Temperatures	318
		12.3.1	Mechanical Equations for Thin-Walled Ablative	210
		121011	Shells	318
		12.3.2	Strains and Stresses in a Multilayer	
			Ablative Shell	319
		12.3.3	Constitutive Relations for a Multilayer Ablative	
			Shell	321
		12.3.4	The Problem Statement on Heat-Mass-Transfer	
			and Deforming for a Multilayer Ablative Shell	322
	12.4	Cylindri	cal Composite Shells Under High Temperatures	324
		12.4.1	Basic Equations	324
		12.4.2	Computed Results.	325
	12.5	Failure	of Composite Structures Under High Temperatures	330
		12.5.1	Conditions of the Appearance of Failure	330
		12.5.2	Behavior of a Composite Shell After	222
		10 5 0	the Appearance of Failure	552 224
		12.5.3	Computed Results	234
	Dafe	12.3.4		330
	Keler	ences		530

13	Finite Pheno	e-Element omena in	Method for Modeling of Thermomechanical Composite Shells Under High Temperatures	339
	13.1	Variation	hal Statements of Problems for Composite Shells	
		Under H	ligh Temperatures	339
		13.1.1	A Variational Statement of a Space Problem	
			for Ablative Shell Mechanics	339
		13.1.2	The Hellinger–Reissner Variational Principle	
			for a Space Problem	344
		1313	The Hellinger-Reissner Variational Principle	
		10.1.0	for Ablative Shells	346
	13.2	Finite-El	lement Method for Ablative Composite Shells	350
	13.2	Compute	ational Methods for Modeling of Internal Heat-Mass-	000
	15.5	Transfer	in Ablative Composite Thin-Walled Shells	354
		12 2 1	The General Method Algorithm	354
		13.3.1	The Dimensionless Form of Heat-Mass-Transfer	554
		13.3.2	Fountion System	355
		1222	The Numerical Solving Algorithm for the Local	555
		15.5.5	Problem	357
		1221	The Asymptotic Method of Solving	557
		15.5.4	the Heat Mass Transfer Broblem in Domain V	360
		1225	The Numerical Method for Solving	500
		15.5.5	the Heat Mass Transfer Equations in Domain V	267
	12 4	Madalin	the neat-mass-fransier Equations in Domain $v_2 \dots$	502
	15.4	Modellin Under I	and Lich Temperature Heating	261
			Jocal High-Temperature Heating	264
		13.4.1	Analysis of Modeling Decults of Internet	504
		15.4.2	Analysis of Modeling Results of Internal	265
		1242	Analysis of Temperature Deformations	260
		13.4.3	Analysis of Temperature Deformations	200
		13.4.4	Analysis of Results for Displacement U_1	270
		13.4.5	Analysis of Results for Displacement U_2	312
		13.4.6	Analysis of Results for Flexure W of the Shell.	3/0
		13.4.7	Analysis of Results for Rotation Angle γ_1	201
		10.4.0	of the Normal	381
		13.4.8	Analysis of Results for Rotation Angle γ_2	202
		10 10	of the Normal	383
		13.4.9	Analysis of Results for Stress σ_1	386
		13.4.10	Analysis of Results for Stress σ_2	386
		13.4.11	Analysis of Results for Stress σ_{12}	390
		13.4.12	Analysis of Results for Stress σ_{13}	390
	13.5	Modelin	ng of Axisymmetric Composite Shells Under Local	• • • •
		High-Te	emperature Heating	390
		13.5.1	Initial Data and Loading Parameters	390
		13.5.2	Analysis of Results for Displacements U_1 and U_2	392
		13.5.3	Analysis of Results for Flexure W	393

Contents

	13.6	Modelin	g of Composite Plates Under Local	
		High-Te	mperature Heating	403
		13.6.1	Initial Data and Loading Parameters	403
		13.6.2	Analysis of Results for Displacement U_1	403
		13.6.3	Analysis of Results for Flexure W	407
		13.6.4	Analysis of Results for Rotation Angle γ_2	
			of the Normal	407
	Refer	ences		414
14	Meth	ods of Ex	perimental Investigation of High-Temperature	
	Prop	erties of (Composite Materials	417
	14.1	Determin	nation of Density Under Heating	417
	14.2	Determin	nation of Thermal Characteristics Under Heating	418
		14.2.1	Experimental Device	418
		14.2.2	Determination of Thermoconductivity	419
		14.2.3	Determination of Heat Conductivity	421
	14.3	Determin	nation of Gas Permeability	422
	14.4	Determin	nation of Heat Deformations Under Heating	423
	14.5	Determin	nation of Strength and Elastic Modulus	
		of Comp	oosites Under High Temperatures	424
	14.6	Gas-Dyn	amical Testing of Composites	427
	Refer	ences		429
т. 1	_			40.1
Ind	ex	• • • • • • •	•••••••••••••••••••••••••••••••••••••••	431