John Lekner

Theory of Reflection

Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves

Second Edition

Contents

1	Intro	oducing Reflection	1
	1.1	The Electromagnetic s Wave	1
	1.2	The Electromagnetic p Wave	ϵ
	1.3		12
	1.4	Acoustic Waves	16
	1.5		20
	1.6		24
	Refe		39
2	Exac	ct Results	41
	2.1	Comparison Identities, and Conservation	
		1 2	41
	2.2	1 9 P	46
	2.3	Reflection at Grazing Incidence, and the Existence	
			52
	2.4		55
	2.5		61
	Refe	rences	72
3	Reflection of Long Waves		
	3.1	Integral Equation and Perturbation Theory for the s Wave	75
	3.2	The s Wave to Second Order in the Interface Thickness	79
	3.3	Integral Invariants	81
	3.4	$\left r_{p}\right ^{2}$ and r_{p}/r_{s} to Second Order	84
	3.5		88
	3.6		90
	Refe		93
4	Variational Theory		
	4.1		95
	4.2		98

x Contents

	4.3	Exact, Perturbation and Variational Results	
		for the sech ² Profile	99
	4.4	Variational Theory for the p Wave	103
	4.5	Reflection by a Layer Between Like Media	106
	4.6	The Hulthén-Kohn Variational Method Applied	
		to Reflection	110
	4.7	Variational Estimates in the Short Wave Case	112
	Refer	ences	114
5	Equa	tions for the Reflection Amplitudes	115
	5.1	A First Order Non-linear Equation for an s Wave Reflection	
		Coefficient	115
	5.2	An Example: Reflection by the Linear Profile	117
	5.3	Differential Equation for a p Wave Reflection Coefficient	120
	5.4	Upper Bounds on R_s and on R_p	122
	5.5	Long Wave Expansions	124
	5.6	Differential Equations for the Reflection Amplitudes	128
	5.7	Weak Reflection: The Rayleigh Approximation	130
	5.8	Iteration of the Integral Equation for r	131
	Refer	ences	133
6	Reflection of Short Waves		135
	6.1	Short Wave Limiting Forms for Some Solvable Profiles	135
	6.2	Approximate High-Frequency Waveforms	139
	6.3	Profiles of Finite Extent with Discontinuities in Slope	
		at the Endpoints	142
	6.4	Reflection Amplitude Estimates from	
		a Comparison Identity	145
	6.5	Perturbation Theory for Short Waves	150
	6.6	Short Wave Results for r_p and r_p/r_s	152
	6.7	A Single Turning Point: Total Reflection	159
	6.8	Two Turning Points, and Tunneling	166
	Refer	ences	172
7	Simple Anisotropy		175
	7.1	Anisotropy with Azimuthal Symmetry	175
	7.2	Ellipsometry of a Thin Film on an Isotropic Substrate	179
	7.3	Thin Film on an Anisotropic Substrate	182
	7.4	General Results for Anisotropic Stratifications	
		with Azimuthal Symmetry	184
	7.5	Differential Equations for the Reflection Amplitudes	185
	7.6	Reflection from the Ionosphere	187
	Dafan	000	100

Contents xi

8	Unia	xial Anisotropy	191
	8.1	Propagation Within Homogeneous Anisotropic Media	191
	8.2	Dielectric Tensor and Normal Modes in Uniaxial Crystals	193
	8.3	Uniaxial Crystal Reflection and Transmission Amplitudes	196
	8.4	Bounds and Zeros of the Reflection Amplitudes,	
		the Polarizing Angle	199
	8.5	External Reflection from an Immersed Crystal	201
	8.6	Normal-Incidence Reflection and Transmission	202
	8.7	Normal Incidence on a Uniaxial Plate	205
	8.8	Isotropic Layer on a Uniaxial Substrate	209
	8.9	Optical Properties of a Uniaxial Layer	211
	Refer	rences	212
9	Ellip	sometry	215
	9.1	Polarizer-Sample-Analyser	215
	9.2	Polarizer-Compensator-Sample-Analyser	217
	9.3	Polarizer-Sample-Compensator-Analyser	218
	9.4	Polarizer-Modulator-Sample-Analyser	219
	9.5	Polarizer-Sample-Modulator-Analyser	221
	9.6	Ellipsometric Measurements: The Principal Angle	221
	9.7	Transmission Ellipsometry	222
		9.7.1 Polarizer–Sample–Analyser	223
		9.7.2 Polarizer–Compensator–Sample–Analyser	223
		9.7.3 Polarizer–Sample–Compensator–Analyser	224
		9.7.4 Transmission Ellipsometry with a Polarization	
		Modulator	225
	9.8	Reflection and Transmission Ellipsometry	
		of a Homogeneous Layer	225
	9.9	Reflection Ellipsometry of Uniaxial Crystals	228
	Refer	rences	230
10		rption	233
10	10.1	Fresnel Reflection Formulae for an Absorbing Medium	233
	10.1	General Results for Reflection by Absorbing Media	234
	10.2	Dielectric Layer on an Absorbing Substrate	
	10.3		241 242
	10.4	Absorbing Film on a Non-absorbing Substrate	
	10.5	Thin Inhomogeneous Absorbing Films.	245
		Attenuated Total Reflection, Surface Waves	249
	10.7	Attenuated Total Reflection: Second Example	256
	10.8	Reflection by a Diffuse Absorbing Interface:	250
	10.0	The Tanh Profile	259
	10.9	Zero Reflection from Dielectric Layer	
	D.C	on Absorbing Substrate	262
	Keter	rences	262

xii Contents

11	Inver	rse Problems	265
	11.1	Reflection at a Sharp Boundary	266
	11.2	Homogeneous Film Between Like Media	269
	11.3	Inversion of Transmission Ellipsometric Data	
		for a Homogeneous Nonabsorbing Layer	271
	11.4	Inversion of Reflection Ellipsometric Data	
		for a Homogeneous Nonabsorbing Layer	272
	11.5	Synthesis of a Profile from r as a Function of Wavenumber	273
	11.6	Inversion of the Rayleigh Approximation	276
	11.7	Principal Angle of an Absorber	278
		rences	279
12	Matrix and Numerical Methods		281
	12.1	Matrices Relating the Coefficients of Linearly Independent	
		Solutions	281
	12.2	Matrices Relating Fields and Their Derivatives	285
	12.3	Multilayer Dielectric Mirrors at Normal Incidence	290
	12.4	Reflection of Long Waves	293
	12.5	Absorbing Stratified Media: Some General Results	295
	12.6	High Transparency of an Absorbing Film	
		in a Frustrated Total Reflection Configuration	298
	12.7	Comparison of Numerical Approaches	300
	12.8	Numerical Methods Based on the Layer Matrices	301
	12.9	Variable Step Size, Profile Truncation, Total Reflection	
		and Tunneling, Absorption, and Calculation	
		of Wavefunctions	306
	Refer	rences	309
13	Perio	dically Stratified Media	311
	13.1	Electromagnetic Waves in Stratified Media	312
	13.2	Periodic Structures, Multilayer Dielectric Mirrors	317
	13.3	Omnidirectional Reflection by Multilayer Dielectric Mirrors	323
		13.3.1 Band Edges at Oblique Incidence	
		for a General Stack	325
		13.3.2 Refractive Indices for Which Omnidirectional	
		Reflection Exists	327
	13.4	Form Birefringence	329
	13.5	Absorbing Periodically Stratified Media	332
		13.5.1 Reflection of s-Polarized Plane Waves	333
		13.5.2 Reflection of <i>p</i> -Polarized Plane Waves	335
		13.5.3 Application to an Absorbing Quarter-Wave Stack	337
	Refer	rences	338
14	Roug	th or Structured Surfaces	341
	14.1	Reflection from Rough Surfaces: The Rayleigh Criterion	342
	14.2	Corrugated Surfaces, Diffraction Gratings	343

Contents xiii

	14.3	Scattering of Light by Liquid Surfaces	349
	14.4	The Surface Integral Formulation of Scattering	252
		by Rough Surfaces	353
	14.5	Absorbing and Rough Surfaces that Are Wet	356
	14.6	Coherent Backscattering	358
	Refere	ences	359
15	Partic	cle Waves	363
	15.1	General Results	363
	15.2	Some Exactly Solvable Profiles	367
	15.3	Perturbation and Variational Theories	374
	15.4	Long Waves, Integral Invariants	376
	15.5	Riccati-Type Equations; the Rayleigh Approximation	378
	15.6	Reflection of Short Waves	380
	15.7	Absorption, the Optical Potential	382
	15.8	Inversion of a Model Reflection Amplitude	385
	15.9	Time Delay in the Reflection of Wavepackets	387
	Refer	ences	390
16	Neuti	ron and X-ray Reflection	391
	16.1	Common Features of X-ray and Neutron Optics	392
	16.2	Reflection Near the Critical Angle	393
	16.3	Reflection by Profiles Without Discontinuities	397
	16.4	Reflection by Profiles with Discontinuities	400
	16.5	Total Reflection: Extraction of the Phase in Lloyd's	
		Mirror Experiments	405
	16.6	Reflection of Neutrons by Periodic Stratifications	410
	16.7	Neutron Reflection by Magnetic Materials	414
	Refer	ences	416
17	Acou	stic Waves	419
	17.1	General Relations for Stratified Media	419
		17.1.1 General Results for the Reflection	
		and Transmission Amplitudes	420
	17.2	Matrix Methods	425
	17.3	Low-Frequency Reflection and Transmission	431
	17.4	High-Frequency Limiting Forms	434
	17.5	Exact Solutions for the <i>exp-lin</i> and <i>exp-exp</i> Stratifications	439
	17.6	An Upper Bound on the Acoustic Reflectivity	441
	17.7	Profiles with Discontinuities in Density or Sound Speed	444
	Appe	ndix: Universal Properties of Acoustic Pulses and Beams	448
		ences	451
18	Chira	al Isotropic Media	453
-	18.1	Constitutive Relations	454
	18.2		456

xiv Contents

		18.2.1 Differential Reflectance, Ellipsometry	460
	18.3	Wave Propagation in Chiral Media	461
		18.3.1 Eigenstates of Curl	463
		18.3.2 Boundary Conditions	464
	18.4	Reflection from an Achiral-Chiral Interface	465
		18.4.1 Wavefunctions	466
		18.4.2 Reflection and Transmission Amplitudes	466
		18.4.3 The Angles θ_B , θ_{pp} , and θ_{pol}	470
	18.5	Optical Properties of a Chiral Layer	471
		18.5.1 Normal Incidence	472
		18.5.2 Optical Properties Near the Critical Angles	474
	Refer	ences	475
19	Dulco	s and Wavepackets	477
1)	19.1	Reflection of Nearly Monochromatic Pulses:	4//
	19.1	The Time Delay	477
	19.2	Nonreflection of Wavepackets by a Subset of the sech ²	4//
	19.2	Potentials	481
		19.2.1 Construction of Reflectionless Wavepackets	482
	19.3	Exact Solutions of Total and Partial Reflection	402
	19.3	of Wavepackets	485
	Anne	ndix: Universal Properties of Electromagnetic Pulses	489
		ences	497
20		e Beams	499
	20.1	Universal Properties of Scalar and of Electromagnetic	
		Beams	499
		20.1.1 Bateman Integral Solution of the Wave Equation	501
		20.1.2 Conservation Laws and Beam Invariants	502
		20.1.3 Non-existence Theorems	504
		20.1.4 Focal Plane Zeros	505
	20.2	Reflection of Beams: The Lateral Beam Shift	507
	20.3	Reflection of Gaussian Beams	511
		20.3.1 Reflection at a Potential Spike (Delta Function)	513
		20.3.2 Reflection at a Sharp Boundary Between	
		Two Media	514
	Appe	ndix 1: Total Internal Reflection: The r_s , r_p Phases	
		and Their Difference	515
		ndix 2: Polarization of Electromagnetic Beams	521
	Refer	ences	526
	10	D. H. Alexandra December 1	500
Ap	pendix	: Reflection and Transmission Formulae	529
Ind	ex		535