Ingvar Lindgren

Relativistic Many-Body Theory

A New Field-Theoretical Approach

Second Edition

Contents

1	Intr	oduction		1
	1.1	Standa	rd Many-Body Perturbation Theory	1
	1.2	Quantu	Im Electrodynamics	2
	1.3	Bethe-	Salpeter Equation	3
	1.4		Atom. Analytical Approach	5
	1.5	Field-7	Theoretical Approach to Many-Body Perturbation	
			· · · · · · · · · · · · · · · · · · ·	5
	1.6	Dynam	nical Processes	7
Par	t I	Basics. St	tandard Many-Body Perturbation Theory	
2	Tim	e-Indepe	ndent Formalism	11
	2.1	First Q	uantization	11
		2.1.1	De Broglie's Relations	11
		2.1.2	The Schrödinger Equation	12
	2.2	Second	l Quantization	14
		2.2.1	Schrödinger Equation in Second Quantization*	14
		2.2.2	Particle-Hole Formalism. Normal Order and	
			Contraction	16
		2.2.3	Wick's Theorem.	17
	2.3 Time-Independent Many-Body Perturbation Theory		18	
		2.3.1	Bloch Equation	18
		2.3.2	Partitioning of the Hamiltonian	19
	2.4	cal Representation	23	
		2.4.1	Goldstone Diagrams	23
		2.4.2	Linked-Diagram Expansion	27
	2.5	All-Ord	der Methods. Coupled-Cluster Approach	29
		2.5.1	Pair Correlation	29
		2.5.2	Exponential Ansatz: Coupled-Cluster Approach	31
		2.5.3	Various Models for Coupled-Cluster Calculations.	
			Intruder-State Problem	33

	2.6	Relativistic MBPT. No-Virtual-Pair Approximation	36 37
	27	2.6.1 QED Effects	51
	2.7	Some Numerical Results of Standard MBPT and CC	20
		Calculations, Applied to Atoms	38
3	Time	e-Dependent Formalism	43
	3.1	Transition Rate	43
	3.2	Evolution Operator	44
	3.3	Adiabatic Damping. Gell-Mann–Low Theorem	48
		3.3.1 Gell-Mann–Low Theorem	49
	3.4	Extended Model Space. The Generalized Gell-Mann-Low	
		Relation	50
Pa	rt II	Bound-State Quantumelectrodynamics:	
		One- and Two-Photon Exchange	
4	S-M	latrix	57
	4.1	Definition of the S-Matrix. Feynman Diagrams	58
		4.1.1 General	58
		4.1.2 Bound States	59
	4.2	Electron Propagator	60
	4.3	Photon Propagator	63
		4.3.1 Feynman Gauge	64
		4.3.2 Coulomb Gauge	66
	4.4	Single-Photon Exchange	67
		4.4.1 Covariant Gauge	68
		4.4.2 Non-covariant Coulomb Gauge	71
		4.4.3 Single-Particle Potential	73
	4.5	Two-Photon Exchange	74
		4.5.1 Two-Photon Ladder	74
		4.5.2 Two-Photon Cross*	76
	4.6	QED Corrections	78
		4.6.1 Bound-Electron Self-energy	78
		4.6.2 Vertex Correction.	81
		4.6.3 Vacuum Polarization.	83
		4.6.4 Photon Self-energy	86
	4.7	Feynman Diagrams for the S-Matrix. Feynman Amplitude	87
		4.7.1 Feynman Diagrams.	87
		4.7.2 Feynman Amplitude. Energy Diagram	87
5	Gree	en's Functions	89
	5.1	Classical Green's Function	89
	5.2	Field-Theoretical Green's Function—Closed-Shell Case	90
		5.2.1 Definition of the Field-Theoretical Green's	
		Function	90

		5.2.2	Single-Photon Exchange	94			
		5.2.3	Fourier Transform of the Green's Function	95			
	5.3	Graphi	ical Representation of the Green's Function*	99			
		5.3.1	Single-Particle Green's Function	99			
		5.3.2	Many-Particle Green's Function	104			
		5.3.3	Self-Energy. Dyson Equation	107			
		5.3.4	Numerical Illustration	108			
	5.4	Field-7	Theoretical Green's Function—Open-Shell Case*	109			
		5.4.1	Definition of the Open-Shell Green's Function	109			
		5.4.2	Two-Time Green's Function of Shabaev	110			
		5.4.3	Single-Photon Exchange	112			
6	The	Covaria	nt Evolution Operator and the Green's-Operator				
	Meth	Method					
	6.1	Definit	tion of the Covariant Evolution Operator	117			
	6.2		t-Order Single-Particle Covariant Evolution Operator	120			
	6.3		-Photon Exchange in the Covariant-Evolution-				
		Operat	or Formalism	122			
	6.4	Ladder	r Diagrams	125			
	6.5	Multi-	Photon Exchange	127			
		6.5.1	General	127			
		6.5.2	Irreducible Two-Photon Exchange*	129			
		6.5.3	Potential with Radiative Parts	131			
	6.6	Relativ	vistic Form of the Gell-Mann-Low Theorem	131			
	6.7	Field-Theoretical Many-Body Hamiltonian in the Photonic					
		Fock Space					
	6.8	Green'	s Operator	135			
		6.8.1	Definition	135			
		6.8.2	Relation Between the Green's Operator				
			and Many-Body Perturbation Procedures	136			
	6.9		-Space Contribution	140			
		6.9.1	Lowest Orders	141			
		6.9.2	All Orders*	146			
	6.10	Bloch	Equation for Green's Operator*	152			
	6.11						
			Bethe–Salpeter Equation*	156			
		6.11.1	Single-Reference Model Space	156			
		6.11.2	Multi-reference Model Space	159			
7			Numerical Calculations of One- and Two-Photon				
			• • • • • • • • • • • • • • • • • • • •	161			
	7.1	S-Matr	ix	161			
		7.1.1	Electron Self-energy of Hydrogenlike Ions	161			
		7.1.2	Lamb Shift of Hydrogenlike Uranium	162			
		7.1.3	Lamb Shift of Lithiumlike Uranium	164			

		7.1.4	Two-Photon Non-radiative Exchange	
			in Heliumlike Ions	164
		7.1.5	Electron Correlation and QED Calculations	
			on Ground States of Heliumlike Ions	165
		7.1.6	g-Factor of Hydrogenlike Ions. Mass of the Free	100
		7.1.0	Electron	168
	7.2	Two T	ime Green's-Function and the Covariant Evolution	100
	1.2			170
		Operat	or Method, Applied to He-Like Ions	170
Par	t III	Unificat	tion of Many-Body Perturbation Theory	
		and Qu	antum Electrodynamics	
8	Bevo	nd Two	-Photon Exchange: Combination of Quantum	
-			nics and Electron Correlation	177
	8.1	Non-ra	diative QED Effects, Combined with Electron	
		Correla	ation	178
		8.1.1	Single-Photon Exchange with Virtual Pairs	178
		8.1.2	Fock-Space Treatment.	186
		8.1.3	Continued Iteration. Combination of Non-radiative	
			QED with Electron Correlation	193
	8.2	Radiati	ive QED Effects, Combined with Electron	
			ation	196
		8.2.1	Two-Electron Screened Self-Energy and Vertex	
		0.2.1	Correction in Lowest Order	197
		8.2.2	All Orders	200
		8.2.3	Continued Coulomb Iterations	202
	8.3		-Order QED. Connection to the Bethe–Salpeter	202
	0.5		on. Coupled-Cluster-QED.	202
		8.3.1	General QED (Single-Transverse-Photon) Potential	202
				203
		8.3.2	Iterating the QED Potential. Connection	204
		0.0.0	to the Bethe–Salpeter Equation	204
		8.3.3	Coupled-Cluster-QED Expansion	205
9			esults of Combined MBPT-QED Calculations	
	Beyo		nd Order	209
	9.1	Non-ra	diative QED Effects in Combination with Electron	
		Correla	ation	209
		9.1.1	Two-Photon Exchange	209
		9.1.2	Non-radiative Effects. Beyond Two-Photon	
			Exchange	210
	9.2	Radiat	ive QED Effects in Combination with	
			on Correlation. Coulomb Gauge.	213
		9.2.1	Radiative Effects. Two-Photon Effects.	213
		9.2.1	Radiative Effects. Beyond Two-Photon Exchange	215
		9.4.4	Radiante Encers. Depond 1 wo-1 noton Exchange	<i>2</i> 10

xiv

	9.3 9.4	Comparison with Experiments	217 218
10	The I 10.1	Bethe-Salpeter Equation Salpeter Equation The Original Derivations of the Bethe-Salpeter Equation 10.1.1 10.1.1 Derivation by Salpeter and Bethe 10.1.2 Derivation by Gell-Mann and Low 10.1.3 Analysis of the Derivations of the Bethe-Salpeter Equation Equation Equation	219 219 219 222 222
	10.2 10.3 10.4	Quasi- and Effective-Potential Approximations. Single-Reference Case Bethe–Salpeter–Bloch Equation. Multi-reference Case* Problems with the Bethe–Salpeter Equation	225 226 228
11	Analy 11.1 11.2 11.3 11.4 11.5	vtical Treatment of the Bethe-Salpeter EquationHelium Fine Structure.The Approach of Sucher.Perturbation Expansion of the BS EquationDiagrammatic Representation.Comparison with the Numerical Approach	231 231 232 237 239 241
12	Regul 12.1 12.2 12.3	Iarization and RenormalizationThe Free-Electron QED12.1.1The Free-Electron Propagator.12.1.2The Free-Electron Self-Energy12.1.3The Free-Electron Vertex Correction.Renormalization Process12.2.1Mass Renormalization12.2.2Charge Renormalization12.3.1Mass Renormalization.12.3.2Evaluation of the Mass Term.12.3.3Bethe's Nonrelativistic Treatment12.3.4Brown-Langer-Schaefer Regularization12.3.5Partial-Wave Regularization.	243 243 245 247 248 249 251 255 255 256 257 259 262
	12.4	Dimensional Regularization in Feynman Gauge* 12.4.1 Evaluation of the Renormalized Free-Electron Self-Energy in Feynman Gauge 12.4.2 Free-Electron Vertex Correction in Feynman Gauge	264 264 268
	12.5	Dimensional Regularization in Coulomb Gauge 12.5.1 Free-Electron Self-Energy in the Coulomb Gauge	208 270 270

Part IV		Dynamical Processes with Bound States		
13	Dyna	mical Bound-State Processes	277	
	13.1	Optical Theorem for Free and Bound Particles	278	
		13.1.1 Scattering of Free Particles. Optical Theorem	278	
		13.1.2 Optical Theorem for Bound Particles	279	
	13.2	Atomic Transition Between Bound States	280	
		13.2.1 Self-Energy Insertion on the Incoming Line	282	
		13.2.2 Self-Energy Insertion on the Outgoing Line	284	
		13.2.3 Vertex Correction	285	
	13.3	Radiative Recombination	286	
		13.3.1 Lowest	287	
		13.3.2 Self-Energy Insertion on the Bound State	288	
		13.3.3 Vertex Correction	289	
		13.3.4 Self-Energy Insertion on the Free-Electron State	290	
		13.3.5 Scattering Amplitude	291	
		13.3.6 Photoionization	293	
14	Sum	mary and Conclusions	295	
Ann	ondiv	A: Notations and Definitions.	297	
Thh	Cilula		271	
Appendix B: Second Quantization			309	
Арр	endix	C: Representations of States and Operators	315	
Арр	endix	D: Dirac Equation and the Momentum Representation	321	
Арр	endix	E: Lagrangian Field Theory	331	
Арр	endix	F: Semiclassical Theory of Radiation	337	
Арр	endix	G: Covariant Theory of Quantum Electro Dynamics	353	
Арр	endix	H: Feynman Diagrams and Feynman Amplitude	365	
Арр	endix	I: Evaluation Rules for Time-Ordered Diagrams	371	
Арр	endix	J: Some Integrals.	379	
Арр	Appendix K: Unit Systems and Dimensional Analysis			
Refe	erence	28	391	
Inde	ex		403	