Alexander Dietrich

Whole-Body Impedance Control of Wheeled Humanoid Robots

Contents

1	Introduction						
	1.1	Motivation					
	1.2	Relate	d Work	3			
	1.3	Proble	em Statement.	5			
	1.4	Conce	pt of Whole-Body Impedance	6			
	1.5	Contri	butions and Overview	8			
2	Fun	damen	tals	13			
	2.1	Robot	Kinematics and Dynamics	13			
		2.1.1	Forward Kinematics, Jacobian Matrices,				
			and Power Ports	13			
		2.1.2	Derivation of the Equations of Motion	14			
		2.1.3	Rigid Body Dynamics	16			
	2.2	Comp	liant Motion Control of Robotic Systems	16			
		2.2.1	Impedance Control	17			
		2.2.2	Admittance Control	18			
	2.3	Huma	noid Robot Rollin' Justin	19			
		2.3.1	Design and Hardware	19			
		2.3.2	Modeling Assumptions	21			
3	Control Tasks Based on Artificial Potential Fields						
	3.1	Self-C	Collision Avoidance	24			
		3.1.1	Geometric Collision Model.	25			
		3.1.2	Repulsive Potential	26			
		3.1.3	Damping Design	28			
		3.1.4	Control Design	31			
		3.1.5	Experiments	- 33			
	3.2	Singul	larity Avoidance for Nonholonomic, Wheeled Platforms	34			
		3.2.1	Instantaneous Center of Rotation	34			
		3.2.2	Controllability and Repulsion	36			
		3.2.3	Effect on the Instantaneous Center of Rotation	37			
		3.2.4	Effect on the Wheel.	- 39			

		3.2.5	Control Design	39		
		3.2.6	Simulations and Experiments	40		
	3.3	Posture	e Control for Kinematically Coupled Torso Structures	44		
		3.3.1	Model of the Torso of Rollin' Justin	45		
		3.3.2	Kinematic Constraints	45		
		3.3.3	Dynamic Constraints	46		
		3.3.4	Control Design	49		
		3.3.5	Experiments	49		
	3.4	Classical Objectives in Reactive Control				
		3.4.1	Cartesian Impedance	50		
		3.4.2	Manipulator Singularity Avoidance	51		
		3.4.3	Avoidance of Mechanical End Stops	52		
	3.5	Summa	ary	52		
4	Red	edundancy Resolution by Null Space Projections				
	4.1	Strictne	ess of the Hierarchy	56		
		4.1.1	Successive Projections	56		
		4.1.2	Augmented Projections	57		
	4.2	Consist	tency of the Projections	58		
		4.2.1	Static Consistency	59		
		4.2.2	Dynamic Consistency	60		
		4.2.3	Stiffness Consistency	64		
	4.3	Compa	rison of Null Space Projectors	65		
		4.3.1	Simulations	66		
		4.3.2	Experiments	70		
		4.3.3	Discussion	75		
	4.4	Unilate	eral Constraints in the Task Hierarchy	78		
		4.4.1	Basics	79		
		4.4.2	Ensuring Continuity.	81		
		4.4.3	Simulations	86		
		4.4.4	Experiments	87		
		4.4.5	Discussion	95		
	4.5	Summa	ary	97		
5	Stab	oility An	nalysis	99		
	5.1	Whole	-Body Impedance with Kinematically			
		Contro	lled Platform	99		
		5.1.1	Subsystems	100		
		5.1.2	Control Design	106		
		5.1.3	Proof of Stability	107		
		5.1.4	Experiments	109		
		5.1.5	Discussion	114		
	5.2	Multi-0	Objective Compliance Control	116		
		5.2.1	Problem Formulation	118		
		5.2.2	Hierarchical Dynamics Representation	120		

	5.3	 5.2.3 Control Design	126 128 131 137 139						
6	Who 6.1 6.2 6.3	De-Body Coordination Order of Tasks in the Hierarchy Implementation on Rollin' Justin Summary	141 142 144 148						
7	Inte Fran 7.1 7.2 7.3	tegration of the Whole-Body Controller into a Higher-LevelameworkameworkIntelligent Parameterization of the Whole-Body Controller2 Communication Channel Between Controller and Planner3 Real-World Applications for a Service Robot							
8	7.4 Sum	Summary	156 157						
Appendix A: Workspace of the Torso of Rollin' Justin									
Appendix B: Null Space Definitions and Proofs									
Aŗ	Appendix C: Proofs for the Stability Analysis.								
Appendix D: Stability Definitions									
Re	feren	ces	177						