Bahman Zohuri

Directed Energy Weapons

Physics of High Energy Lasers (HEL)

Contents

1	Direc	eted Energy Weapons	1
	1.1	Introduction	1
	1.2	PUFF74: A Material Response Computer Code	4
		1.2.1 Availability of PUFF74 Computer Code	5
	1.3	PUFF-TFT: A Material Response Computer Code	6
		1.3.1 Availability of PUFF-TFT Computer Code	10
	1.4	SANDYL: A Monte Carlo Three-Dimensional	
		Computer Code	10
		1.4.1 Availability of SANDYL Computer Code	13
	1.5	ASTHMA88 (Axisymmetric Transient Heating	
		and Material Ablation) Code	13
		1.5.1 Availability of ASTHMA88 Computer Code	14
	1.6	ALE3D (Arbitrary Lagrangian/Eulerian Multi-Physics 3D)	
		Computer Code	14
		1.6.1 ALE3D Program Availability	17
	1.7	CTH Computer Code	17
		1.7.1 Availability of CTH Computer Code	20
	1.8	HYPUF, Stress Wave Response Computer Code	20
		1.8.1 Availability of HYPUF, Stress Wave Response	
		Computer Code	21
	1.9	DYNA2D and DYNA3D Computer Codes Series	21
		1.9.1 Availability of DYNA2D and DYNA3D	
		Computer Codes	22
	1.10	NIKE2D and NIKE3D Computer Codes Series	23
		1.10.1 Availability NIKE2D and NIKE3D Computer	
		Codes Series	24
	1.11	TOPAZ2D and TOPAZ3D Computer Codes Series	24
		1.11.1 Availability TOPAZ2D and TOPAZ3D Computer	
		Codes Series	25
	Refe	rences	26

2	Laser	r Technology	27
	2.1	Basic Principles	27
	2.2	Overall Theme	28
	2.3	A Word About Units	29
	2.4	Developing Damage Criteria	29
	2.5	The Energy Required for Damage	29
	2.6	The Laser Beam	30
	2.7	Summary	33
	Refer	ences	33
3		r Safety	35
v	3.1	Laser Safety	35
	3.2	Laser Hazards	36
	5.2	3.2.1 Laser Hazards to the Eye	36
		3.2.2 Laser Hazards to the Skin	39
	3.3	Safety Regulations	39
	3.4		40
	3.4 3.5	Laser Hazard Classification	
		Laser Range Safety Tool (LRST) Physics	41
	Refer	ences	46
4		r Weapons	47
	4.1	Laser as a Weapon	47
	4.2	Possible Targets	48
	4.3	Energy Level at the Target	48
	4.4	Absorption and Scattering	50
	4.5	Atmospheric Structure with Altitude	52
	4.6	The Major Laser Weapon Concepts	53
	4.7	Small-Scale Weapons Using Lab-Type Lasers	55
	4.8	High-Energy Lasers as Weapons	55
	4.9	High-Energy Laser (HEL) Safety Program	56
		4.9.1 Airborne Laser (YAL-1A)	58
		4.9.2 Tactical High-Energy Laser for Air Defense	63
	4.10	Lasers for Air Defense	64
		4.10.1 Target Acquisition for Combat Operations	67
		4.10.2 Overview	67
		4.10.3 Description	67
	4.11	Target-Background Discrimination for Surveillance	70
		4.11.1 Overview	70
		4.11.2 Description	71
	Refer	ences	77
5		r-Directed Energy Concepts	79
3	5.1	Laser Beam and Material Interactions and Its Lethality	79 79
	5.1 5.2		
		Introduction to Effectiveness of Directed Energy Weapons	81
	5.3	The Mathematics of Diffusion	82

		5.3.1	The Diffusion Process and Basic Hypothesis	
			of Mathematical Theory	83
		5.3.2	The Differential Equation of Diffusion Equation	86
		5.3.3	Boundary and Initial Conditions	89
		5.3.4	Material Response	91
	5.4	Effects	Caused by Absorption of Laser Radiation	
			Surface	133
		5.4.1	Heating Without Phase Change	138
		5.4.2	Heating with Phase Change	139
		5.4.3	Melt-Through of a Metal Plate	141
	Refer	ences		142
6	Uiah.	Fnorov	Laser Beam Weapons	145
U	6.1		Laser Deam Weapons	145
	6.2		ed Energy Weapons Engagements	149
	0.2	6.2.1	Acquisition, Tracking, Pointing, and Fire Control.	153
	6.3	-	ength Effects	154
	6.4		mospheric Propagation Problem	158
	0.4	6.4.1	Laser Light Scattering and Intensity	162
	6.5		al Blooming Effects	162
	0.5	6.5.1	Mathematical Foundation of Thermal Blooming	100
	6.6		ve Beaming and Imaging in Turbulent Atmosphere	172
	0.0	6.6.1	Adaptive Optics	176
		6.6.2	Deformable Mirror	178
			Large Optical Systems	181
		6.6.3 6.6.4		181
	6.7		What Is Phase Conjugation in Optics? Effects	191
	0.7	6.7.1	Measured Characteristic of Target Both Optically	191
		0.7.1	and Thermally	192
		6.7.2	Target Absorptance Optical Approach	192
		6.7.3	Target Absorptance Thermal Approach	194
		6.7.4	Mathematical Modeling of Thermal Approach	194
	Dafar			198
	Kelei			
7	Lase			201
	7.1		action	201
	7.2		aser Works	206
	7.3	Laser 1	Light Propagation	212
	7.4	Physic	s of Laser Absorption in Metals	215
			Description of the Phenomena	217
	7.5		ehavior of Electromagnetic Radiation at Interface	218
		7.5.1	Light Propagation in Materials	221
		7.5.2	Depth of Focus	228
		7.5.3	Laser Beam Quality	230
		7.5.4	Spherical Aberration	231
		7.5.5	Thermal Lens Effect	232

	7.6	Theoretical Discussion of Laser Absorption and Reflectivity	
		7.6.1 Reflectivity of Materials at Infrared Wavelength	
	7.7	Mathematical of Laser Absorption in Metals	
	7.8	Material and Thermal Response	
		7.8.1 Boundary Conditions	
	7.9	Solutions of Governing Equation	264
		7.9.1 Analytical Methods	
		7.9.2 Melting Process	331
		7.9.3 Melting and Vaporization	
		7.9.4 Electron–Phonon Analytical Solution	344
	7.10	Comparison of Fourier and Kinetic Theory	
	7.11	Finite Difference Methods	
	7.12	Effects of Pulsed Wave Laser Radiation	
		7.12.1 Power Levels of Pulsed Wave Laser	353
		7.12.2 Material Vaporization Effects	353
		7.12.3 Effects from Absorption of Radiation	
		in the Plume	358
	7.13	Effects of Continuous Wave Laser Radiation	
	Refer	ences	376
8	Atmo	ospheric Propagation of High-Energy Laser Beams	379
	8.1	Introduction	
	8.2	Laser Propagation in the Atmosphere	
		8.2.1 Cloud Descriptions	
		8.2.2 Absorption and Scattering of Laser Beam	
		by Gases and Solids	385
	8.3	Laser and Thermal Blooming Effects	
	8.4	Mission Impact	
	8.5	Adaptive Optics	
	8.6	Current Initiatives	
		ences	
	norer		712
Aŗ	opendi	x A: Short Course in Taylor Series	415
AĮ	opendi	x B: Short Course in Vector Analysis	423
		x C: Short Course in Ordinary and Partial	450
וע	iterent	tial Equations	453
Aŗ	opendi	x D: Short Course in Complex Variables	535
Aŗ	opendi	x E: Short Course in Fourier and Laplace Transforms	585
Aŗ	opendi	x F: Short Course in Electromagnetic	685

Appendix G: Short Course in Optics	751
Appendix H: Short Course in Heat Conduction	767
Appendix I: Data and Plots of Thermal Parameters of Different Materials	795
Appendix J: Acronyms and Definitions	809
Index	813