Luca Fedeli

High Field Plasmonics

Doctoral Thesis accepted by University of Pisa, Italy

Contents

1	Intr Refe	luction	1 5						
2	Introduction on High Intensity Laser-Plasma Interaction								
	and	ligh Field Plasmonics	7						
	2.1	Evolution of High Intensity Laser Technology	7						
		2.1.1 Overview	8						
		2.1.2 A Typical High Intensity Ti:Sapphire Laser System 1	0						
		2.1.3 Towards 10 PW Laser Systems	1						
	2.2	Relativistic Laser Plasma Interaction 1	2						
		2.2.1 Single Particle Motion	2						
		2.2.2 Propagation of EM Waves in a Plasma 1-	4						
		2.2.3 Relativistic Kinetic Equations 1	6						
		2.2.4 Energy Absorption with Overdense Targets 1	8						
		2.2.5 Target Normal Sheath Acceleration (TNSA) 2	1						
		2.2.6 Radiation Reaction Force and QED Effects 2	2						
		2.2.7 Applications	3						
	2.3	High Field Plasmonics 2	8						
		2.3.1 Excitation of Surface Plasmons	9						
		2.3.2 Overview of Plasmonic Schemes and Applications 3.	3						
		2.3.3 Outlook for Relativistic Plasmonics	4						
	Refe	nces	5						
3	Nun	rical Tools	1						
	3.1	Numerical Simulations of Plasma Physics 4	1						
	3.2	Particle-In-Cell Codes	3						
	3.3	PICCANTE: An Open-Source PIC Code	5						
		3.3.1 Optimization of Piccante	8						
	3.4	PICcolino: A Spectral PIC Code 55	2						

	3.5	Applic	cations	54
		3.5.1	Weibel Instability in Pair-Plasmas.	54
		3.5.2	Intense Laser Interaction with Thin Gold Targets	58
	Refe	rences.	• • • • • • • • • • • • • • • • • • • •	60
4	Elec	tron A	cceleration with Grating Targets	63
	4.1	Introdu	uction and Previous Results	64
		4.1.1	Previous Experimental Investigations	64
		4.1.2	Previous Theoretical and Numerical Investigations	67
	4.2	Experi	imental Campaign at CEA-Saclay	67
		4.2.1	Experimental Setup	68
		4.2.2	Experimental Results	73
	4.3	Nume	rical Simulations	79
		4.3.1	2D Simulation Campaign	80
		4.3.2	3D Simulation Campaign	82
	4.4	Theor	y of Surface Plasmon Acceleration	87
	4.5	Exper	imental Campaign at GIST	92
		4.5.1	Laser System.	93
		4.5.2	Experimental Set-Up	93
		4.5.3	Preliminary Results	94
	4.6	Concl	usions	95
	Refe	erences.		95
5	Foa	m Targ	gets for Enhanced Ion Acceleration.	99
	5.1	Introd	luction	100
		5.1.1	Requirements for a Laser-Based Ion Accelerator.	100
		5.1.2	Previous Investigations with Foam Targets	102
	5.2	Exper	imental Activity	103
		5.2.1	Laser System	103
		5.2.2	Experimental Setup	104
		5.2.3	Targets	105
		5.2.4	Experimental Plan (First Campaign)	107
		5.2.5	Experimental Plan (Second Campaign)	107
	5.3	Exper	rimental Results	108
		5.3.1	First Experimental Campaign: Enhanced Ion	
			Acceleration	108
		5.3.2	Second Experimental Campaign: Effect of Pulse	
			Length on Ion Acceleration with Foam Targets	111
	5.4	Nume	erical Simulations	112
		5.4.1	2D Simulations	112
		5.4.2	3D Simulations	121
		5.4.3	Modelling of Foam Target with Diffusion Limited	
			Aggregation	125
	5.5	Conc	lusions	127
	Ref	erences		128

6	Nun	erical Exploration of High Field Plasmonics in Different							
	Scer	n rios	131						
	6.1	Rayleigh–Taylor Instability in Radiation Pressure Acceleration 1	132						
		6.1.1 Radiation Pressure Acceleration 1	132						
		6.1.2 Theoretical Model of Laser-Driven Rayleigh–Taylor							
		Instability 1	136						
		6.1.3 Numerical Simulations 1	143						
		6.1.4 Conclusions	149						
	6.2	Plasmonic Effects in High Order Harmonic Generation from							
		Grating Targets 1	150						
		6.2.1 Introduction on HHG with Laser-Based Sources 1	150						
		6.2.2 Grating Targets as a HHG Source 1	152						
		6.2.3 Conclusions	157						
	6.3	Energy Concentration Schemes? 1	158						
		6.3.1 Conclusions 1	160						
	Refe	ences 1	160						
7	Conclusions and Perspectives								
	Refe	ence 1	166						
Ap	pend	x A: Code Normalization 1	167						
Ap	pend	K B: Particle-In-Cell algorithm 1	169						
Cu	irricu	um Vitae 1	177						