Sumira Jan • Javid Ahmad Parray

Approaches to Heavy Metal Tolerance in Plants

Contents

1	Heavy	Metal Uptake in Plants	1		
	1.1	Introduction			
	1.2	Metal Ion Binding to Extracellular Exudates			
		and to the Cell Wall	3		
	1.3	Metal Ion Transport Through			
		the Plasma Membrane in Roots	4		
		1.3.1 ZIP Family	4		
		1.3.2 NRAMP Family	5		
		1.3.3 Copper Transporter Family	5		
	1.4	Reduced Metal Uptake and Efflux Pumping			
		at the Plasma Membrane	6		
	1.5	Root-to-Shoot Metal Translocation	7		
	1.6	Metal Storage	8		
		1.6.1 HMA Family of Transporters	8		
		1.6.2 MATE Family of Efflux Proteins	8		
		1.6.3 Oligopeptide Transporter Family	9		
	1.7	Heavy Metal Chelation in the Cytosol	9		
		1.7.1 Phytochelatins	9		
		1.7.2 Metallothioneins (MTs)	10		
		1.7.3 Ferritins	12		
	1.8	Organic Acids, Amino Acids,			
		and Phosphate Derivatives	12		
	1.9	Metal Sequestration in the Vacuole			
		by Tonoplast Transporters	13		
		1.9.1 The ABC Transporters	13		
		1.9.2 The CDF Transporters	13		
		1.9.3 The HMA Transporters	14		
		1.9.4 CaCA Transporters	14		
		1.9.5 NRAMP Transporters	15		
	Refere	ences	15		
2	Metal	Tolerance Strategy in Plants	19		
	2.1	2.1 Heavy Metal Interaction with Other Nutrients			
	2.2	Inversion of Metal Toxicity with Nutrient			
		Element Interactions	20		
	2.3	Role of Phytochelatins in Metal Tolerance	22		

	2.4	Metal	Complex Formation by PCs	23
		2.4.1	Metal Chelation with Reference	
			to Cadmium by Phytochelatins (PCs)	24
	2.5	ion of Heavy Metals		
		tallothioneins (MTs)	25	
	2.6	Detoxification by Organic		
		Acids,	Amino Acids, and Other	
		Phospł	nate Derivatives	25
	Refere	ences		28
3	Heavy	y Metal	Stress Signalling in Plants	33
	3.1	Introdu	action	34
		3.1.1	Direct Action of Heavy Metals	35
		3.1.2	Indirect Action of Heavy Metals	35
	3.2	Hormo	one Signalling Pathways	36
		3.2.1	Signalling Through Reactive	
			Oxygen Species (ROS)	37
	3.3	Review	v of Abiotic Stress Features	
			ating MAPK Activity	39
	3.4	Plant H	Hormones Induced MAPK Activity	41
	3.5	MAPK	K Modules Involved Both in Plant	
		Develo	opment and in Stress Response	42
	3.6	Strateg	gies to Elucidate Stress-Stimulated	
		MAPK	Is and Allied Plant Stress Tolerance	43
	3.7	Stratagem for Genetic Manipulations		
		of Kin	ases and Their Targets	
		with B	iotechnological Prospective	45
		3.7.1	Stress Tolerance in Arabidopsis	
			with Genetically Modified MAPKs	45
		3.7.2	Tolerance Strategy in Plants Exhibiting	
			Genetically Tailored MAPKs	47
	Refer	ences		48
4	Use o	f Mycor	rrhiza as Metal	
-		-	rategy in Plants	57
	4.1		uction	58
	4.2		Cell Wall and Exudates	59
	4.3		a Membrane	59
	4.4		ssion and Role of Heat Shock Proteins (HSPs)	60
	4.5	-	nism of Arbuscular Mycorrhizal (AM)	
			for Phytoremediation	61
		4.5.1	Phytostabilization	61
		4.5.2	Phytoextraction	63
	4.6		opmental Patterns of AMF	
			g Heavy Metal Stress	64
	4.7		gical Development	
			Rhizosphere by AMF	64
	Refer			65

5	Phyte	oremedia	ation: A Green Technology	69	
	5.1		iction	70	
	5.2	Phytoe	xtraction	71	
	5.3	Phytos	tabilization	71	
	5.4	Rhizofiltration			
	5.5	Phytov	olatilization	71	
	5.6	Fundar	nental Mechanism of Heavy Metals		
		and Inc	organic Contaminant Uptake and Transport	72	
		5.6.1	Accumulation and Sequestration	72	
		5.6.2	Hereditary Basis of Tolerance	73	
	5.7	Basic N	Mechanisms: Organic Contaminants	73	
		5.7.1	Mechanisms of Genetic Controls:		
			Candidate Genes	73	
		5.7.2	Investigation and Classification		
			of Enzymes and Proteins	74	
		5.7.3	Transgenic Strategies	74	
		5.7.4	Metal Transporters and Interactions		
			in Membranes at Molecular Level	74	
	5.8	Feature	e Controlling the Metal Uptake	75	
		5.8.1	Selection of Plant Species	75	
		5.8.2	Characteristics of Medium	75	
		5.8.3	Rhizosphere	75	
		5.8.4	Vegetative Uptake	75	
		5.8.5	Addition of Chelating Agent	75	
	5.9	Advant	tages of Phytoremediation	76	
		5.9.1	Phytoremediation for Hydraulic Regulation		
			of Pollutants	77	
		5.9.2	Riparian Corridors	77	
		5.9.3	Vegetative Cover	77	
		5.9.4	Phytoremediation to Treat		
			Metal Contaminants	77	
		5.9.5	Constructed Wetlands	77	
		5.9.6	Vegetative Caps	77	
		5.9.7	Soil Conditioning	78	
		5.9.8	Fortification of Riparian Corridors	78	
	5.10	Limitat	ions of Phytoremediation Technology	78	
		5.10.1	Relevance of Phytoremediation	80	
	Refer	ences		82	
6	Conc	epts for	Improving Phytoremediation		
	by Pl	ant Engi	neering	89	
	6.1	Introduction			
	6.2	Classic	Genetic Studies and Modern		
			ch for Improving Phytoremediation	91	
	6.3	Improv	ed Metal Sequestration, Metal		
			orters, and Allied Biomolecules		
		via Ger	netic Engineering	92	

	6.4	Genetic	c Manipulation of Metal-Sequestration				
		Protein	s and Peptides	93			
	6.5	Genetic	c Engineering for				
		Encodi	ng Metal Ion Transporters	94			
	6.6	Genetic	c Engineering of Enzymes				
	to Enhance Phytovolatilization			96			
	6.7		ing Zinc Phytoremediation Efficiency	97			
	References						
7	Biodiv	ersity I	Prospecting for Phytoremediation				
	of Me	tals in t	he Environment	103			
	7.1	Introdu	lction	103			
	7.2	7.2 Metal Hyperaccumulators for Phytoremediation					
		7.2.1	Ornamental Plants	104			
		7.2.2	Serpentinophytes and Metal				
			Hyperaccumulation	105			
		7.2.3	Vegetables Crops	105			
		7.2.4	Plant Products as Biosorbents				
			of Toxic Metals	105			
	7.3	Elemental Allelopathy and Role					
		of Hyp	eraccumulators and Serpentinophytes	106			
	7.4	Molecular and Transgenic Approaches					
		for Phy	vtoremediation	107			
	7.5	Phytore	Phytoremediation Technology				
		for Enh	nancing Chelation	107			
	Refere			109			