Psang Dain Lin

Advanced Geometrical Optics

Contents

Part I A New Light on Old Geometrical Optics (Raytracing Equations of Geometrical Optics)

1	Math	Mathematical Background					
	1.1	Foundational Mathematical Tools and Units	3				
	1.2	Vector Notation	5				
	1.3	Coordinate Transformation Matrix	7				
	1.4	Basic Translation and Rotation Matrices.	9				
	1.5	Specification of a Pose Matrix by Using Translation					
		and Rotation Matrices	15				
	1.6	Inverse Matrix of a Transformation Matrix	16				
	1.7	Flat Boundary Surface	17				
	1.8	RPY Transformation Solutions	19				
	1.9	Equivalent Angle and Axis of Rotation	20				
	1.10	0 The First- and Second-Order Partial Derivatives					
		of a Vector	22				
	1.11	Introduction to Optimization Methods	26				
	Refer	ences	28				
2	Skew	-Ray Tracing of Geometrical Optics	29				
	2.1	Source Ray	29				
	2.2	Spherical Boundary Surfaces	32				
		2.2.1 Spherical Boundary Surface and Associated Unit					
		Normal Vector	32				
		2.2.2 Incidence Point	34				
		2.2.3 Unit Directional Vectors of Reflected					
		and Refracted Rays	37				

	2.3	Flat Bo	oundary Surfaces	44
		2.3.1	Flat Boundary Surface and Associated Unit Normal	
			Vector	44
		2.3.2	Incidence Point	46
		2.3.3	Unit Directional Vectors of Reflected	
		~	and Refracted Rays	47
	2.4	General	Aspherical Boundary Surfaces	55
		2.4.1	Aspherical Boundary Surface and Associated Unit	~~
		242	Normal Vector.	22
	25	Z.4.Z	incidence Point	57
	2.5	Incomi	ng and Outgoing Pous	61
		251	Unit Normal Vector of Refractive Boundary	04
		2.3.1	Surface	65
		252	Unit Normal Vector of Reflective Boundary	05
		2.0.2	Surface	67
	Refere	ences		68
2	C		Q=(1)M-1-1	~ 1
3	Geom	Avia S	upucal Model	71
	5.1	AAIS-53	Flamants with Spherical Doundary Surfaces	76
		312	Elements with Spherical and Elat Boundary	70
		J.1.2	Surfaces	77
		313	Elements with Flat and Spherical Boundary	,,
		511.0	Surfaces.	78
		3.1.4	Elements with Flat Boundary Surfaces	79
	3.2	Non-ax	tially Symmetrical Systems.	87
	3.3	Spot D	iagram of Monochromatic Light	97
	3.4	Point S	pread Function	99
	3.5	Modula	ation Transfer Function.	104
	3.6	Motion	Measurement Systems	109
	Refere	ences		113
4	Ravtr	acing E	quations for Paraxial Ontics	115
•	4.1	Ravtrac	cing Equations of Paraxial Optics for 3-D Optical	110
		System	IS	115
		4.1.1	Transfer Matrix	117
		4.1.2	Reflection and Refraction Matrices for Flat	
			Boundary Surface	118
		4.1.3	Reflection and Refraction Matrices for Spherical	
			Boundary Surface	119
	4.2	Conver	ntional 2×2 Raytracing Matrices for Paraxial Optics	123
		4.2.1	Refracting Boundary Surfaces	124
		4.2.2	Reflecting Boundary Surfaces	125

	4.3	Conventional Raytracing Matrices for Paraxial Optics Derived			
		from Geometry Relations	128		
		4.3.1 Transfer Matrix for Ray Propagating Along	120		
		4.2.2 Defraction Matrix at Defractive Flat Boundary	129		
		4.5.2 Refraction Matrix at Refractive Flat Doundary	121		
		4.2.2 Deflection Matrix at Elet Mirror	122		
		4.5.5 Reflection Matrix at Patronical Poundary	155		
		4.5.4 Refraction Matrix at Refractive Spherical Boundary	125		
		4.2.5 Deflection Matrix at Spherical Mirror	132		
	Dofo		142		
	Nele		172		
5	Card	linal Points and Image Equations	143		
	5.1	Paraxial Optics	143		
	5.2	Cardinal Planes and Cardinal Points	145		
		5.2.1 Location of Focal Points	146		
		5.2.2 Location of Nodal Points.	148		
	5.3	Thick and Thin Lenses	149		
	5.4	Curved Mirrors	151		
	5.5	Determination of Image Position Using Cardinal Points	153		
	5.6	Equation of Lateral Magnification.	154		
	5.7	Equation of Longitudinal Magnification	155		
	5.8	Two-Element Systems	156		
	5.9	Optical Invariant.	159		
		5.9.1 Optical Invariant and Lateral Magnification.	160		
		5.9.2 Image Height for Object at Infinity	161		
		5.9.3 Data of Third Ray	162		
		5.9.4 Focal Length Determination	164		
	Refe	rences	165		
6	Rav	Aberrations	167		
	6.1	Stops and Aperture	167		
	6.2	Ray Aberration Polynomial and Primary Aberrations	169		
	6.3	Spherical Aberration	171		
	6.4	Coma	173		
	6.5	Astigmatism	177		
	6.6	Field Curvature	179		
	6.7	Distortion	180		
	6.8	Chromatic Aberration	181		
	Refe	rences	183		

art	t II	New To (First-O	ols for Optical Analysis and Design order Derivative Matrices of a Ray and its OPL)			
,	Jaco	Jacobian Matrices of Ray \bar{R}_i with Respect to Incoming				
	Ray	$\bar{\mathbf{R}}_{i-1}$ an	d Boundary Variable Vector \bar{X}_i	187		
	7.1	Jacobi	an Matrix of Ray	188		
	7.2	Jacobi	an Matrix $\partial \bar{R}_i / \partial \bar{R}_{i-1}$ for Flat Boundary Surface	189		
		7.2.1	Jacobian Matrix of Incidence Point	190		
		7.2.2	Jacobian Matrix of Unit Directional Vector			
			of Reflected Ray	191		
		7.2.3	Jacobian Matrix of Unit Directional Vector			
			of Refracted Ray	191		
		7.2.4	Jacobian Matrix of \bar{R}_i with Respect to \bar{R}_{i-1}			
			for Flat Boundary Surface	192		
	7.3	Jacobi	an Matrix $\partial \bar{R}_i / \partial \bar{R}_{i-1}$ for Spherical Boundary Surface	195		
		7.3.1	Jacobian Matrix of Incidence Point	196		
		7.3.2	Jacobian Matrix of Unit Directional Vector			
			of Reflected Ray	197		
		7.3.3	Jacobian Matrix of Unit Directional Vector			
			of Refracted Ray	198		
		7.3.4	Jacobian Matrix of \overline{R}_i with Respect to \overline{R}_{i-1}			
			for Spherical Boundary Surface	198		
	7.4	Jacobi	an Matrix $\partial \bar{R}_i / \partial \bar{X}_i$ for Flat Boundary Surface	201		
		7.4.1	Jacobian Matrix of Incidence Point	202		
		7.4.2	Jacobian Matrix of Unit Directional Vector			
			of Reflected Ray	203		
		7.4.3	Jacobian Matrix of Unit Directional Vector			
			of Refracted Ray	203		
		7.4.4	Jacobian Matrix of \overline{R}_i with Respect to $\overline{X}_i \dots \dots \dots$	204		
	7.5	Jacobi	an Matrix $\partial \bar{R}_i / \partial \bar{X}_i$ for Spherical Boundary Surface	206		
		7.5.1	Jacobian Matrix of Incidence Point	207		
		7.5.2	Jacobian Matrix of Unit Directional Vector			
			of Reflected Ray	208		
		7.5.3	Jacobian Matrix of Unit Directional Vector			
			of Refracted Ray	208		
		7.5.4	Jacobian Matrix of R_i with Respect to $\bar{X}_i \dots \dots \dots$	209		
	7.6	Jacobi	an Matrix of an Arbitrary Ray with Respect			
		to Syst	tem Variable Vector	210		
	App	endix 1.	• • • • • • • • • • • • • • • • • • • •	213		
	App	endix 2.	• • • • • • • • • • • • • • • • • • • •	215		
	Refe	erences		218		

8	Jacobian Matrix of Boundary Variable Vector $ar{\mathbf{X}}_{\mathbf{i}}$					
	with Respect to System Variable Vector \bar{X}_{svs}					
	8.1	System Variable Vector	219			
	8.2	Jacobian Matrix $d\bar{X}_0/d\bar{X}_{svs}$ of Source Ray	220			
	8.3	Jacobian Matrix $d\bar{X}_i/d\bar{X}_{sys}$ of Flat Boundary Surface	221			
	8.4	Jacobian Matrix $d\bar{X}_i/d\bar{X}_{svs}$ of Spherical Boundary Surface	226			
	Appe	ndix 1	233			
	Appe	ndix 2	236			
	Appe	ndix 3	238			
	Appe	ndix 4	241			
	Refer	ences	243			
Q	Prisn	n Analysis	245			
,	91	Retro-reflectors	245			
	9.1	911 Corner-Cube Mirror	245			
		9.1.1 Conter-Cube Winton	245			
	92	Dispersing Prisms	248			
	1.2	9.2.1 Triangular Prism	249			
		9.2.7 Pellin-Broca Prism and Dispersive Abbe Prism	250			
		923 Achromatic Prism and Direct Vision Prism	251			
	93	Right-Angle Prisms	253			
	9.4	Porro Prism	254			
	9.5	Dove Prism	255			
	9.6	Roofed Amici Prism	256			
	9.7	Erecting Prisms	257			
		9.7.1 Double Porro Prism.	257			
		9.7.2 Porro-Abbe Prism	259			
		9.7.3 Abbe-Koenig Prism	260			
		9.7.4 Roofed Pechan Prism	261			
	9.8	Penta Prism.	262			
	Appe	ndix 1	263			
	Refer	ences	264			
10	Prisn	n Design Based on Image Orientation	267			
10	10.1	Reflector Matrix and Image Orientation Function	267			
	10.2	Minimum Number of Reflectors	274			
		10.2.1 Right-Handed Image Orientation Function	275			
		10.2.2 Left-Handed Image Orientation Function.	277			
	10.3	Prism Design Based on Unit Vectors of Reflectors.	277			
	10.4	Exact Analytical Solutions for Single Prism				
		with Minimum Number of Reflectors	282			
		10.4.1 Right-Handed Image Orientation Function	284			
		10.4.2 Left-Handed Image Orientation Function	284			

		10.4.3	Solution for Right-Handed Image Orientation	
		10.4.4	Function	285
		10.4.4	Solution for Left-Handed Image Orientation	200
	10.5	Driem I	Function	200
	10.5	Triangl	e Method	201
	Refer	ences		291
	Refer	ciices		274
11	Deter	minatio	n of Prism Reflectors to Produce Required Image	
	Orier	tation.		295
	11.1	Determ	ination of Reflector Equations	295
	11.2	Determ	ination of Prism with $n = 4$ Boundary Surfaces	200
	11.2	to Prod	uce Specified Right-Handed Image Orientation	298
	11.3	Determ	ination of Prism with $n = 5$ Boundary Surfaces	202
	Defer	to Prod	uce Specified Leff-Handed Image Orientation	302
	Refer	ence	• • • • • • • • • • • • • • • • • • • •	307
12	Optic	ally Sta	ble Systems	309
	12.1	Image	Orientation Function of Optically Stable Systems	309
	12.2	Design	of Optically Stable Reflector Systems	312
		12.2.1	Stable Systems Comprising Two Reflectors	312
		12.2.2	Stable Systems Comprising Three Reflectors	313
		12.2.3	Stable Systems Comprising More Than Three	
			Reflectors	314
	12.3	Design	of Optically Stable Prism	316
	Refer	ence		318
13	Point	Spread	Function, Caustic Surfaces and Modulation	
	Tran	sfer Fun	letion	319
	13.1	Infinite	simal Area on Image Plane	320
	13.2	Derivat	ion of Point Spread Function Using Irradiance	
		Method	1	322
	13.3	Derivat	ion of Spot Diagram Using Irradiance Method	326
	13.4	Caustic	Surfaces	327
		13.4.1	Caustic Surfaces Formed by Point Source	328
		13.4.2	Caustic Surfaces Formed by Collimated Rays	330
	13.5	MTF T	heory for Any Arbitrary Direction of OBDF	333
	13.6	Determ	ination of MTF for Any Arbitrary Direction	
		of OBI	DF Using Ray-Counting and Irradiance Methods	336
		13.6.1	Ray-Counting Method	336
		13.6.2	Irradiance Method	337
	Appe	ndix 1.	• • • • • • • • • • • • • • • • • • • •	344
	Appe	ndix 2 .	• • • • • • • • • • • • • • • • • • • •	345
	Appe	$\operatorname{ndix} 3$.		346
	Appe	naix 4.		346
	Refer	ences		549

14	Opti 14.1	cal Path I Jacobiar	Length and Its Jacobian Matrix	353
		Surfaces	δ	353
		14.1.1	Jacobian Matrix of OPL _i with Respect to Incoming	
			Ray \bar{R}_{i-1}	354
		14.1.2	Jacobian Matrix of OPL _i with Respect to Boundary	
			Variable Vector \bar{X}_i	355
	14.2	Jacobia	n Matrix of OPL Between Two Incidence Points	357
	14.3	Comput	ation of Wavefront Aberrations	362
	14.4	Merit F	unction Based on Wavefront Aberration	368
	Refe	rences		369
Part	ш	A Brigh	t Light for Geometrical Optics (Second-Order	
		Derivati	ve Matrices of a Ray and its OPL)	
15	Wav	efront Al	perration and Wavefront Shape	373
	15.1	Hessian	Matrix $\partial^2 \bar{R}_i / \partial \bar{R}_{i-1}^2$ for Flat Boundary Surface	374
		15.1.1	Hessian Matrix of Incidence Point P _i	375
		15.1.2	Hessian Matrix of Unit Directional Vector $\vec{\ell}_i$	375
		15.1.3	Hessian Matrix of Unit Directional Vector $\bar{\ell}_i$	575
			of Refracted Ray	375
	15.2	Hessian	Matrix $\partial^2 \bar{R}_i / \partial \bar{R}_{i-1}^2$ for Spherical Boundary Surface	376
		15.2.1	Hessian Matrix of Incidence Point \overline{P}_i	376
		15.2.2	Hessian Matrix of Unit Directional Vector $\overline{\ell}_i$	
			of Reflected Ray	377
		15.2.3	Hessian Matrix of Unit Directional Vector $\overline{\ell}_i$	
			of Refracted Ray	377
	15.3	Hessian	Matrix of \bar{R}_i with Respect to Variable Vector \bar{X}_0	
		of Sour	ce Ray	378
	15.4	Hessian	Matrix of OPL _i with Respect to Variable Vector \bar{X}_0	
		of Sour	ce Ray	380
	15.5	Change	of Wavefront Aberration Due to Translation	
		of Poin	t Source \overline{P}_0	382
	15.6	Wavefr	ont Shape Along Ray Path	387
	1010	15.6.1	Tangent and Unit Normal Vectors of Wavefront	389
		1560	First and Second Fundamental Forms of Wavefront	505
		15.0.2	Surface	390
		1562	Principal Curvatures of Wavefront	392
	۰	13.0.3	rincipal Curvatures of Wavenone	399
	App	ciluix I		400
	App			403
	Rele	achees		.00

16	Hessian Matrices of Ray $\bar{\mathbf{R}}_i$ with Respect to Incoming Ray $\bar{\mathbf{R}}_{i-1}$ and Boundary Variable Vector $\bar{\mathbf{X}}_i$						
	16.1	Hessian Vector.	Matrix of a Ray with Respect to System Variable	405			
	16.2	Hessian	Matrix $\partial^2 \bar{\mathbf{R}}_{\pm} / \partial \bar{\mathbf{X}}_{\pm}^2$ for Flat Boundary Surface	407			
		16.2.1 16.2.2	Hessian Matrix of Incidence Point \overline{P}_i Hessian Matrix of Unit Directional Vector $\overline{\ell}_i$	407			
		16.2.3	of Reflected Ray Hessian Matrix of Unit Directional Vector $\overline{\ell}_i$	408			
	16.2	Ussaian	Of Reflacted Ray	400			
	10.5	Hessian	Matrix $O^{-}K_{i}/OX_{i}OX_{i-1}$ for Flat Boundary Surface	409			
		16.3.2	Hessian Matrix of Unit Directional Vector $\bar{\ell}_i$	410			
			of Reflected Ray	411			
		16.3.3	Hessian Matrix of Unit Directional Vector ℓ_i	411			
			of Refracted Ray	411			
	16.4	Hessian	Matrix $\partial^2 R_i / \partial X_i^{-}$ for Spherical Boundary Surface	412			
		16.4.1	Hessian Matrix of Incidence Point P_i	412			
		16.4.2	Hessian Matrix of Unit Directional Vector ℓ_i	410			
		1640	of Reflected Ray	413			
		16.4.3	Hessian Matrix of Unit Directional Vector ℓ_i	112			
	165	Ussaian	Of Reflacted Ray	415			
	10.5	Surface	Matrix $O(\mathbf{K}_i) O \mathbf{X}_i O \mathbf{K}_{i-1}$ for Spherical Boundary	414			
		1651	Hessian Matrix of Incidence Point \overline{P}_{1}	415			
		16.5.1	Hessian Matrix of Unit Directional Vector \overline{l}_{1}	115			
		10.5.2	of Reflected Ray	415			
		16.5.3	Hessian Matrix of Unit Directional Vector $\overline{\ell}_i$				
		10.0.0	of Refracted Ray	416			
	Appe	ndix 1	· · · · · · · · · · · · · · · · · · ·	417			
	Appe	ndix 2		420			
	Refer	ence		423			
17	Hessi	an Matr	ix of Boundary Variable Vector $ar{\mathbf{X}}_{i}$				
	with	Respect	to System Variable Vector \bar{X}_{eve}	425			
	17.1	Hessian	Matrix $\partial^2 \bar{X}_0 / \partial \bar{X}^2_{sys}$ of Source Ray	425			
	17.2	Hessian	Matrix $\partial^2 \bar{X}_i / \partial \bar{X}_{sys}^2$ for Flat Boundary Surface	426			
	17.3	Design	of Optical Systems Possessing Only Flat Boundary				
		Surface	s	430			
	17.4	Hessian	Matrix $\partial^2 \bar{X}_i / \partial \bar{X}_{svs}^2$ for Spherical Boundary Surface	433			
	17.5	Design	of Retro-reflectors	437			
		0.					

	Apper	ndix 1		441
	Apper	ndix 2		443
	Apper	ndix 3		445
	Appei	ndix 4		446
	Refere	ences		449
18	Hessia	an Matr	ix of Optical Path Length	451
	18.1	Determ	ination of Hessian Matrix of OPL	451
		18.1.1	Hessian Matrix of OPL _i with Respect to Incoming	
			Ray \overline{R}_{i-1}	453
		18.1.2	Hessian Matrix of OPL: with Respect to \bar{X}_i	
		10.1.2	and \bar{R}_{1}	453
		1813	Hessian Matrix of OPL_{*} with Respect to Boundary	
		10.1.5	Variable Vector $\overline{\mathbf{X}}$	453
	18 2	System	Analysis Based on Jacobian and Hessian Matrices	455
	10.2	of Way	afront Aberrations	454
	10 2	OI wav	Design Deced on Jacobien and Hassian Matrices	737
	18.5	System	Design based on Jacobian and Hessian Manices	156
		or wav		450
	Refere	ence	·····	457
VII	'A			459