Shi Nguyen-Kuok

Theory of Low-Temperature Plasma Physics

Contents

The	Theoreti	ical Basis of the Low-Temperature Plasma	
1.1	The Ba	asic Approaches to the Description of Plasma	
	1.1.1	The Plasma Relations for the Full Thermodynamic	
		Equilibrium	
	1.1.2	The Model of Local Thermodynamic Equilibrium	
		in Plasma	
	1.1.3	The Model of Partial Local Thermodynamic	
		Equilibrium in Plasma	
1.2	Model	of Equilibrium Plasma	1
	1.2.1	The Energy Balance Equation	1
	1.2.2	The Momentum Equations of the Plasma Flow	1
	1.2.3	The Continuity Equation of the Plasma Flow	1
	1.2.4	The Maxwell's Equations	1
	1.2.5	The Equations of Equilibrium Plasma Model	
		in a Cylindrical Coordinate System]
1.3	The Ty	wo-Temperature Model of Nonequilibrium Plasma]
	1.3.1	The Violation of Ionization Equilibrium in Plasma.	
		Equation of Ionization Equilibrium	2
1.4	The Tr	wo-Speed Plasma Model	2
1.5	Gas Dynamic Models of Plasma Turbulence		
	1.5.1	The Reynolds-Averaged Navier–Stokes Equations	1
	1.5.2	The Main Gas Dynamic Model of Turbulence	
1.6	Models of Light Emission and Absorption in Plasma		
	1.6.1	Radiation in the Continuous Spectrum	
	1.6.2	Absorption in the Continuum	4
	1.6.3	Radiation in the Spectral Lines	4
	1.6.4	The Absorption in Spectral Lines	4
Refe	rences		

1

2	Class	sical The	ory of the Particle Scattering	53
	2.1	Classica	al Consideration of the Particle Scattering	53
	2.2	Determi	ination of Cross Sections for Plasma Particles	
		Interacti	ion	59
		2.2.1	Coulomb Scattering: The Cross Section	
			of the Interaction of Charged Particles	59
		2.2.2	Ramseur Effect and the Resonance Scattering	
			of the Electrons by Atoms	64
		2.2.3	The Cross Sections for the Interaction	
			of Molecule–Molecule, Atom–Atom	65
		2.2.4	The Cross Sections for the Interaction	
			of the Atom–Ion	66
	Refe	rences		70
3	Oua	ntum Me	chanical Theory of the Particle Scattering	71
-	3.1	The Scl	hrödinger Equation	71
	3.2	Solution	n of the Schrödinger Equation for the Elastic	
		Interact	ions	74
	3.3	Determi	ination of the Phase Shift	78
	3.4	Born A	pproximation for Calculating the Amplitudes	
		of the S	Scattered Waves	81
	3.5	Determ	ination of Differential and Total Cross Sections	
		of Elast	tic Interactions	85
	Refe	rences		92
4	Doto	rminatio	n of the Composition Thermodynamic	
-	Pror	ortios ar	nd Transport Coefficients on the Basis	
	of th	e Mean l	Free Path	93
	41	The Pla	asma Composition	93
	42	Thermo	advnamic Properties of the Plasma	98
	43	Transpo	or Coefficients of the Plasma	102
		431	Determination of the Electrical Conductivity	102
			and Thermal Conductivity	103
		4.3.2	Determination of the Viscosity, the Ambipolar	
			Diffusion Coefficient, and Integrated Emission	108
	4.4	The Co	efficients of Triple Recombination and Impact	
		Ionizati	on	114
	4.5	The Fre	equency of Particle Collisions, the Current Density,	
		and He	ating Capacity of Plasma.	117
	Refe	rences	• • •	120
5	The	Roltzmai	nn Kinetic Faustion and Calculation	
3	of th	o Traner	nn Anneae Equation and Calculation	123
	51	Introdu	ction of the Boltzmann Kinetic Equation	123
	5.1	The Tr	ansport Equations	125
	5.4	521	Principle of the Equilibrium Systems	130
		2.2.1	rimerpre of the Equinorium Officing	100

	5.3	Solutio	n of the Boltzmann Kinetic Equation	
		by Cha	pman–Enskog Approach	132
	5.4	Determ	ination of Viscosity	139
		5.4.1	Determination of the Elements in the Bracket	
			Integral {B, B} by Sonine Polynomials	141
		5.4.2	The Bracket Integrals	143
	5.5	Determ	ination the Coefficients of Diffusion, Thermal	
		Diffusio	on, and Thermal Conductivity	146
		5.5.1	Calculation of Diffusion and Thermal Diffusion	
			Coefficients	146
		5.5.2	Determination of the Heat Flow	147
		5.5.3	Defining Elements of the Bracket Integrals $\{ ilde{A}, ilde{A}\}$	
			and {A, D} Using the Sonine Polynomials	148
		5.5.4	The Bracket Integrals	151
	5.6	Determ	ination of the Electrical Conductivity	156
	Refer	ences	· · · · · · · · · · · · · · · · · · ·	157
~	NI	nical M	lethade of the Diagna Dhysics	150
0		Basia a	fethous of the Flashia Flashics	150
	0.1		Solution of the Generalized Differential Equation	150
		0.1.1	Solution of the Momentum Equations and the	159
		0.1.2	Continuity Equation of the Gas Elux	171
		612	Conversion of Different Equations in Generalized	1/1
		0.1.5	Form	180
	67	The St	ability of the Difference Methods and Computational	100
	0.2	Procedures		
		6.2.1	Stability of Difference Methods	184
		622	Analysis of the Computational Procedures Stability	187
	63	The St	ructural Organization of Computational Procedures	191
	0.5	631	The External Feedback in the Structure of	171
		0.5.1	Computational Procedures	191
		632	Installing Internal Feedback in the Computational	
		0.5.2	Procedures	192
		633	The Mathematical Algorithms with Internal	
		0.5.5	Feedback	197
		6.3.4	The Stability Region of the Computational Procedures	
		0.011	of Plasma Processes.	200
	Refer	ences		202
7	Tha I	RF Place	ma Torches	205
'	7 1	Charao	teristics of the RF Plasma Torches	205
	77	Flectro	magnetic Field in the RF Plasma Torches	205
	1.4	721	Faustion of the Vector Potential and Its Solution	219
		72.1	Boundary Conditions of the Equation	217
		1.2.2	of the Vector Potential	222

		7.2.3	Calculation of the Electromagnetic Field and Electric	227
	73	Simula	tion of the Equilibrium Plasma in the RE Plasma	221
	1.5	Torche	s	240
		7.3.1	Algorithms of the Mathematical Model	241
		7.3.2	Analysis of the Simulation Results	249
	7.4	Disturb	pance of the Thermal and Ionization Equilibrium	
		in Plas	ma. Caused by the Gases Movement	258
	7.5	Simula	tion of the Nonequilibrium Plasma in the RF Plasma	244
		Torche		266
		7.5.1	Discrete Analogues of the Mathematical Model	267
	Defer	1.5.2	Comparative Analysis of the Simulation Results	212
	Refer	ences	• • • • • • • • • • • • • • • • • • • •	282
8	The A	Arc Plas	sma Torches	285
	8.1	The Fe	eatures of the Arc Plasma Torches	285
	8.2	The A	rc Plasma Torches for Cutting and Spraying	292
	8.3	Simula	tion of the Arc Plasma Torches in the Channel	299
		8.3.1	Models of the Arc Plasma Torches in the Channel	299
		8.3.2	Analysis of the Simulation Results	307
	8.4	Two-D	Dimensional Electromagnetic Problem for the Arc	
		Plasma	a Torches	315
		8.4.1	Solution Using the Electric Potential	318
		8.4.2	Solution Using the Function of the Electric Current	322
		8.4.3	Calculation of the Electromagnetic Field of the Arc	
			Plasma Torches	327
	8.5	The Fr	ee Burning Arc Plasma Torches	334
		8.5.1	The Arc Plasma Torches for Welding and Melting	
			of Metals	334
		8.5.2	Algorithms of the Mathematical Models	337
		8.5.3	Comparative Analysis of the Simulation Results	346
	Refer	ences	•••••••••••••••••••••••••••••••••••••••	364
9	Elect	rode Pr	ocesses in the Arc Plasma Torches	367
	9.1	Model	of the Cathode Processes	368
	9.2	Calcula	ation of the Cathode Processes	379
	9.3	Therm	al Problem of Heating the Cathode	391
	9.4	Model	of the Anode Processes	395
	Refer	ences		397
10	Heat	Exchan	ige and Movement of the Solid Particles	
	in the	e Plasm	ā	399
	10.1	The Ba	asic Approaches to the Description of the Heat	
		Exchar	nge and Movement of the Particles in the Plasma	401
		10.1.1	The Criteria of Heat Transfer and Gas Dynamics	
			of Particles	401

		10.1.2	The Non-gradient Heating and Movement	
			of the Particles in the Plasma	403
		10.1.3	The Gradient Heating Particles in the Plasma	407
		10.1.4	Evaporation of Particles in the Plasma	410
	10.2	Calcula	tion of the Heating and Movement of the Particles	
		with the	e Given Parameters of the Plasma Flow	415
		10.2.1	Installation for Plasma Treatment	
			of Powder Materials	415
		10.2.2	Solution for Equations of the Heating	
			and Movement Particles	418
	10.3	The Mo	odel of Plasma, Loaded the Flow of Solid Particles	425
	Refere	ences		430
11	The F	agturas	of the Experimental Methods and Automated	
11	Diagr	ostic Sv	stams of DF and Arc Plasma Torchos	/31
	11 1	The Ex	nerimental Setun and Automated Diagnostic System	401
	11.1	for the	Study of the RF and Arc Plasma Torches	431
		11 1 1	Adjusting Elements in Optical System	435
	11.2	The Ba	sic Methods of the Plasma Diagnostics	438
	11.3	Measur	ements of Plasma Parameters in the RF	150
		and Arc	c Plasma Torches	449
	Refere	ences		458
Арр	endix	A		459
Арр	endix	B		465
Ann	ondiv	C		460
трр	CHUIX	C		407
Арр	endix	D		479
Арр	endix	E		481
Inde	ex			495