Sparse Coding and its Applications in Computer Vision

Zhaowen Wang (Adobe Systems, Inc., USA) Jianchao Yang (Snapchat, Inc., USA) Haichao Zhang (Amazon.com, Inc., USA) Zhangyang Wang (University of Illinois, Urbana-Champaign, USA) Yingzhen Yang (University of Illinois, Urbana-Champaign, USA) Ding Liu (University of Illinois, Urbana-Champaign, USA) Thomas S Huang (University of Illinois, Urbana-Champaign, USA)

Contents

Pre	eface		v			
1.	Introduction					
	1.1	Background	1			
	1.2	Basic Formulation	2			
	1.3	Important Applications	3			
	1.4	Organization	6			
2.	Theo	ories of Sparse Coding	7			
	2.1	Fundamentals	7			
	2.2	Sparse Priors	7			
	2.3	Sparse Solvers	9			
	2.4	Dictionary Learning	10			
3.	Imag	e Super-Resolution	13			
	3.1 Learning Dictionary Pairs for Super-Resolution					
		3.1.1 Joint Sparse Coding	14			
		3.1.2 Coupled Sparse Coding	15			
		3.1.3 Implementation Details	17			
		3.1.4 Experiments	18			
	3.2	From Sparse Coding to Deep Network	22			
		3.2.1 LISTA Network for Sparse Coding	22			
		3.2.2 Recurrent Network for Image SR	23			
		3.2.3 Network Cascade for Scalable SR	25			
		3.2.4 Experiments	28			

	3.3	Learning Super-Resolution Jointly from External and				
		Intern	al Examples	32		
		3.3.1	A Motivation Study of Joint SR	33		
		3.3.2	Comparing External and Internal SR Methods	34		
		3.3.3	A Joint SR model	36		
		3.3.4	Sparse Coding for External Examples	36		
		3.3.5	Epitomic Matching for Internal Examples	37		
		3.3.6	Learning the Adaptive Weights	39		
		3.3.7	Optimization	39		
		3.3.8	Experiments	41		
4.	Image Deblurring 44					
	4.1	Defini	tion of Deblurring	49		
	4.2		ty Regularized Blind Image Deblurring	51		
		4.2.1	Sparse Modeling in Image Restoration	51		
		4.2.2	Sparse Representation Regularized Blind			
			Deblurring	53		
		4.2.3	Optimization Procedure	54		
		4.2.4	Blind Image Deblurring Results	56		
	4.3	Blind	Deblurring with Domain Knowledge	58		
		4.3.1	Domain Knowledge Learning via Sparse			
			Representation	60		
		4.3.2	Joint Blind Restoration and Recognition			
			with Sparse Representation Prior	62		
		4.3.3	Optimization Procedure	63		
		4.3.4	Experiments and Results	65		
5.	Sensor Fusion 75					
	5.1	Sparsi	ty in Multiple Sensors	75		
	5.2	Multiple-Measurement Classification with Joint				
		-	ured Sparsity	79		
		5.2.1	Joint Structured Sparsity with Same			
			Sparse Codes	80		
		5.2.2	Joint Structured Sparsity with Common Sparse			
			Pattern	83		
		5.2.3	Joint Dynamic Sparsity Prior	85		
		5.2.4	Classification with Joint Structured Sparse			
			Representation	90		

Contents

	5.3	Application: Multi-Channel Acoustic Sensor Fusion basedClassification91				
		5.3.1	Experiment Setups	91		
		5.3.2	Results	92		
	5.4		cation: Multi-View Face Recognition	92		
	0.1	5.4.1	Face Recognition with Increasing Number	01		
		0.1.1	of Views	93		
		5.4.2	Face Recognition under Different Feature	00		
		0.1.2	Dimensions	95		
		5.4.3	Face Recognition in the Presence of View	00		
		0.4.0	Difference between Training and Testing	96		
		5.4.4	The Effects of Sparsity Level	97		
		5.4.5	Face Recognition Across Different Sessions	98		
		0.4.0	race necognition refoss Different Sessions	50		
6.	Clustering 99					
	6.1	Learni	ing with ℓ^1 -Graph for High Dimensional Data			
		Analys	sis	100		
		6.1.1	Rationales on ℓ^1 -Graph	103		
		6.1.2	Learning with ℓ^1 -Graph	108		
		6.1.3	Experiments	111		
	6.2	A Joir	t Optimization Framework of Sparse Coding			
		and D	iscriminative Clustering	117		
		6.2.1	Model Formulation	118		
		6.2.2	Clustering-Oriented Cost Functions	119		
		6.2.3	Experiments	124		
			arized ℓ^1 -Graph	129		
		6.3.1	Regularization of ℓ^1 -Graph by Fixed Graph			
				129		
		6.3.2	Regularization of ℓ^1 -Graph by Learnt			
			Sparse Codes	132		
7.	Object Recognition 1					
	7.1	Super	vised Translation-Invariant Sparse Coding	148		
	•••	7.1.1	Notations	149		
		7.1.1 7.1.2	Hierarchical Translation-Invariant Sparse Coding	1-10		
		1.1.4	Structure	149		
		7.1.3	Supervised Dictionary Learning for Hierarchical	149		
		1.1.0	Supervised Dictionary Learning for merarchical Sparse Coding	152		
			opense Ooung	104		

		7.1.4	Interpretation as Sparse Subspace Modeling	156	
		7.1.5	Experiment Results	157	
	7.2		Iargin Sparse Representation Classifier	162	
		7.2.1	Local Decision Boundary for SRC	163	
		7.2.2	Margin Approximation for SRC	165	
		7.2.3	Maximum-Margin Dictionary Learning	168	
		7.2.4	Experiments	170	
8.	Hyper-Spectral Image Modeling 1'				
	8.1	Formu	lation and Algorithm	180	
		8.1.1	Notations	180	
		8.1.2	Joint Feature Extraction and Classification	181	
		8.1.3	Bi-Level Optimization Formulation	184	
		8.1.4	Algorithm	184	
	8.2	Experi	ments	186	
		8.2.1	Classification Performance on AVIRIS Indiana		
			Pines Data	190	
		8.2.2	Classification Performance on AVIRIS Salinas		
			Data	190	
		8.2.3	Classification Performance on University of		
			Pavia Data	192	
		8.2.4	Influences of Dictionary Size	194	
		8.2.5	Influences of Unlabeled Samples	196	
		8.2.6	Discriminability of Dictionary	196	
9.	Conc	lusions		199	
Ap	pendix	c A Al	opendix	203	
	A.1	Joint S	SR	203	
		A.1.1	Epitomic Matching Algorithm	203	
		A.1.2	Subjective Evaluation Experiment	204	
	A.2	Cluste	ring	205	
		A.2.1	Joint Clustering	205	
		A.2.2	Proof of Proposition 6.1	206	
		A.2.3	Solving (6.43) with ADMM	207	
		A.2.4	Time Complexity of ADMM	208	
		A.2.5	Supplementary Clustering Results	208	
	A.3	Deriva	tion of SGD Algorithm (8.10)	210	