Ulrich Poth

Polyester und Alkydharze

Grundlagen und Anwendungen

Inhaltsverzeichnis

1	Definitionen	15
2	Geschichte der Polyesterharze	18
3	Aufbau und Struktur von Polyestern und Alkydharzen	23
3.1	Reaktionen für den Aufbau	23
3.1.1	Grundlegende Reaktionen	23
3.1.1.1	Veresterung von Alkoholen und Carbonsäuren	23
3.1.1.2	Umesterungsreaktion	25
3.1.1.3	Reaktionskatalyse	27
3.1.1.4	Anhydrid-Addition	28
3.1.1.5	Epoxid-Addition	29
3.1.1.6	Andere Bildungsreaktionen	29
3.1.2.	Aufbau von Polyestern und Alkydharzen	30
3.1.2.1	Bildung linearer Polyester	30
3.1.2.2	Bildung verzweigter Polyester	33
3.1.2.3	Ringschlüsse als Nebenreaktionen?	34
3.1.2.4	Vernetzung beim Aufbau von Polyestern	35
3.1.2.5	Besonderheiten bei der Bildung von Alkydharzen	36

Sie suchen die richtigen Rohstoffe für Ihre Rezeptur?

CSC () jäklechemie

Wir heifen Ihnen, die Erwartungen Ihrer Kunden zu erfüllen.
Unsere Beratungskompetenz und die enge Zusammenarbeit mit führenden Produzenten machen dies möglich.

Fordern Sie unser Lieferprogramm an und informieren Sie sich über die Leistungen, die wir Ihnen bieten können.

DISTRIBUTION, BERATUNG, SERVICE

AUS EINER HAND.

CSC JÄKLECHEMIE GmbH & Co. KG
Matthiasstraße 10–12 · D-90431 Nürnberg · Tel.: 00 49/911/3 26 46-0 · Fax: 00 49/911/3 26 46-60
www.csc-jaekle.de · e-mail: erwartungen@csc-jaekle.de

3.2	Bestimmung und Begrenzung der Größe von	
	Polyestermolekülen	37
3.2.1	Abhängigkeit der Größe	37
3.2.2	Ableitungen der Gelpunktgleichungen	41
3.3	Berechnungsverfahren für mittlere Molmassen	44
3.3.1	Auswahl der Einflussgrößen auf die Molmassen	44
3.3.2	Einfluss des molaren Verhältnisses von Polyol und	
	Polycarbonsäure auf die Größe von Polyestermolekülen	45
3.3.3	Einfluss des Kondensationsgrads auf die Größe der	
	Polyestermoleküle	52
3.3.4	Beispiele für die Berechnungsverfahren	56
3.3.5	Berechnungsverfahren für mittlere Molmassen von	
	Alkydharzen	60
3.4	Molekulare Größenverteilungen von Polyestern und	
	Alkydharzen	64
3.4.1	Beschreibung der molekularen Größenverteilung	64
3.4.2	GPC-Analyse	67
3.4.3	Einflüsse auf die molekulare Größenverteilung von	
	Polyestern	71
3.4.4	Einflüsse auf die molekulare Größenverteilung von	
	Alkydharzen	86
3.5	Funktionalität von Polyestern und Alkydharzen	91
3.6	Ausnahmereaktionen für die Molmassenverteilungen	93
3.7	Index für die Symbole, Definitionen und Berechnungen	94
3.8	Index der Gleichungen	96
4	Eigenschaften von Polyestern und Alkydharzen	102
4. I	Auswahlprinzipien für die verschiedenen Bausteine	102
4.1.1	Einfluss auf Löslichkeit und Verträglichkeit	103
4.1.2	Einfluss auf die Filmeigenschaften	106
4.2	Gesättigte Polyester	109
4.2.1	Hochmolekulare, gesättigte Polyester	109
4.2.2	Polyester als Weichmacher	112
4.2.3	Gesättigte Polyester als Hartharze	113
4.2.4	Polyester-Segmente	114

4.2.4.1	Gesättigte Polyester als Bausteine für	
	Polyurethan-Elastomere1	
4.2.4.2	Feuchtigkeitsvernetzende Polyesterurethane I	
4.2.4.3	Polyesteracrylate 1	19
4.2.5	Gesättigte OH-Polyester für fremdvernetzbare,	
	lösemittelhaltige Lacksysteme	20
4.2.5.1	Wichtigste Gruppe der gesättigten Polyesterharze	20
4.2.5.2	Struktur und Zusammensetzung der gesättigten,	
	fremdvernetzenden Polyester für lösemittelhaltige Lacke 13	21
4.2.5.3	Gesättigte OH-Polyester für die Aminoharz-Vernetzung 12	23
4.2.5.4	Gesättigte OH-Polyester für die Vernetzung mit freien	
	Polyisocyanaten	27
4.2.5.5	Gesättigte OH-Polyester für die Vernetzung mit verkappten	
	Polyisocyanaten 1	31
4.2.5.6	Gesättigte OH-Polyester für festkörperreiche Lacke	
	(High-Solids)	33
4.2.6	Wasserverdünnbare, gesättigte Polyester 1	39
4.2.7	Gesättigte Polyester für Pulverlacke	50
4.2.7.1	Thermoplastische, gesättigte Polyester für Pulverlacke 1.	5 I
4.2.7.2	Carboxylpolyester für Pulverlacke	
4.2.7.3	OH-Polyester für Pulverlacke	59
4.2.8	Selbstvernetzende Polyester (auch mit heterocyclischen	
	Bausteinen) le	62
4.2.9	Siliconpolyester	65
4.3	Ungesättigte Polyester (UP-Harze)	69
4.3.1	Vernetzung ungesättigter Polyester	69
4.3.2	Nichtmodifizierte UP-Harze – "Wachspolyester" 1	73
4.3.3	"Glanzpolyester" l	76
4.3.4.	UV-Vernetzung von ungesättigten Polyestern 1	79
4.3.5	Sonstige ungesättigte Polyester 1	80
4.4	Alkydharzel	81
4.4.1	Einteilung der Alkydharze	81
4.4.2	Oxidativ vernetzende Alkydharze1	82
4.4.2.1	Vernetzungsreaktionenl	82
4.4.2.2	Langölige, oxidativ vernetzende Alkydharze	87

4.4.2.3	Mittel- und kurzölige, oxidativ vernetzende Alkydharze	192	
4.4.2.4	Korrosionsschutz-Alkydharze	196	
4.4.2.5	Alkydharze für festkörperreiche, oxidativ vernetzende Lacke	199	
4.4.3	Modifizierte Alkydharze	201	
4.4.3.1	Styrolisierte und acrylierte Alkydharze	201	
4.4.3.2	Thixotropierte Alkydharze	203	
4.4.3.3	Urethanmodifizierte Alkydharze	205	
4.4.3.4	Sonstige modifizierte, oxidativ vernetzende Alkydharze	207	
4.4.4	Wasserverdünnbare, oxidativ vernetzende Alkydharze und		
	Alkydharz-Emulsionen	208	
4.4.5	Fremdvernetzende Alkydharze	213	
4.4.5.1	Alkydharze für Einbrennlacke	214	
4.4.5.2	Alkydharze für säurehärtende Lacke	221	
4.4.5.3	Alkydharze für die Isocyanat-Vernetzung	222	
4.4.5.4	Alkydharze für festkörperreiche Reaktionslacke	224	
4.4.5.5	Wasserverdünnbare Alkydharze für Reaktionslacke	225	
4.4.5.6	Sonstige Alkydharze für Reaktionslacke	227	
4.4.6	Vergleich von OH-Gruppen haltigen Alkydharzen und		
	Polyestern mit anderen Bindemitteln	228	
4.4.7	OH-Alkydharze als Kombinationspartner für physikalisch		
	trocknende Bindemittel	234	
4.4.8	Inverse Alkydharze	236	
4.5	Spezielle Polyestersysteme	238	
4.5.1	Polycarbonate	238	
4.5.2	Polycaprolactone	239	
4.5.3	Polyester aus Dienaddukten	241	
4.5.4	Standöle	243	
Literaturh	inweise	246	
Referenzer	Referenzen		
Stichworty	verzeichnis	254	