Contents

1	Introduction and Guide					
2	Some Notions of Electromagnetism					
	2.1	Maxwell's Equations and Their Solution	5			
	2.2	Relativistic Notation	7			
	2.3	Lorentz Force Law	9			
	2.4	Electromagnetic Energy–Momentum Tensor	11			
	2.5	Solution for Point Charge with Arbitrary Motion	14			
		2.5.1 Fields Due to a Single Point Charge	14			
		2.5.2 Larmor Formula for Radiated Power	21			
		2.5.3 Alternative Formula for Fields Due to a Point Charge	22			
		2.5.4 Point Charge with Constant Velocity	25			
3	Electromagnetic Mass					
	3.1	Energy in the EM Fields of a Charged Particle				
	3.2	Momentum in the EM Fields of a Charged Particle				
	3.3	Inertial Mass				
	3.4	Self-Force				
	3.5	Radiation Reaction				
	3.6	Lorentz–Dirac Equation				
	3.7	A Toy Electron				
4	A Br	Excursion into General Relativity	47			
	4.1	Static Homogeneous Gravitational Field	47			
	4.2	Equality of Inertial and Passive Gravitational Mass	51			
	4.3	Status of this Result	54			
		4.3.1 Geodesic Principle	54			
		1.3.2 Equality of Inertial and Passive Gravitational Mass				
		Revisited	56			
		1.3.3 Do Einstein's Equations Explain Inertia?	59			
	4.4	Active Gravitational Mass	64			

xì

	4.5	The Machian Program and the Brans–Dicke Theory				
	4.6	Conclusion 71				
_	14					
5	Mom	mentum and Energy in the EM Fields of a Charge Dumbbell 73				
	5.1 5.2	Energy Considerations				
	5.2	Longitudinal Motion of the Dumbbell				
		5.2.1 Non-Relativistic Calculation				
	50	5.2.2 Relativistic Calculation				
	5.3	Transverse Motion of the Dumbbell				
	5.4	Neutral Particle				
	5.5	Spread of Field Momentum after an Acceleration				
6	Self-Force for Transverse Linear Acceleration					
	6.1	Setting the Scene				
	6.2	Electric Self-Force				
	6.3	Magnetic Self-Force				
	6.4	Constant Velocity Case				
	6.5	Power Series Expansion of Self-Force				
		6.5.1 Expansions for Retarded Time and Retarded Point 102				
		6.5.2 Expansion for Total Self-Force				
	6.6	Interpreting the Expansion of the Self-Force				
		6.6.1 Divergent Term in the Self-Force				
		and Mass Renormalisation 109				
		6.6.2 Constant Term in the Self-Force				
		and Radiation Reaction110				
7	Self-F	Force for Axial Linear Acceleration				
	7.1	Setting the Scene 115				
	7.2	Self-Force 119				
	7.3	Constant Velocity Case 121				
	7.4	Power Series Expansion of Self-Force				
		7.4.1 Expansions for Retarded Times and Retarded Points 123				
		7.4.2 Expansion for Self-Force				
	7.5	Interpreting the Leading Order Term in the Self-Force				
8	Self-H	Force for Transverse Rotational Motion				
	8.1	Setting the Scene				
	8.2	Retarded Times and Retarded Displacement Vectors				
	8.3	Power Series Expansion of Retarded Times				
	8.4	Power Series Expansion of Retarded Displacement Vectors 141				
	8.5	Power Series Expansion of Electric Self-Force				
		8.5.1 Electric Force of A on B				
		8.5.2 Electric Force of B on A				
		8.5.3 Electric Self-Force				
	X 6	Power Neries Expansion of Magnetic Self-Force 151				
	0.0					

9	Self-Force for Longitudinal Rotational Motion				
	9.1	Setting the Scene	157		
	9.2	Retarded Times and Retarded Displacement Vectors			
	9.3	Power Series Expansion of Retarded Times	160		
		9.3.1 Expansion for t_+^A	160		
		9.3.2 Expansion for $t_{\pm}^{\dot{B}}$	162		
	9.4	Power Series Expansion of Retarded Displacement Vectors	164		
	9.5	Power Series Expansion of Electric Self-Force			
		9.5.1 Electric Force of A on B	169		
		9.5.2 Electric Force of B on A	171		
		9.5.3 Electric Self-Force	174		
	9.6	Power Series Expansion of Magnetic Self-Force	174		
	9.7	Power Series Expansion of Total Self-Force and Interpretation	176		
	9.8	General Conclusion for the Four Scenarios	177		
10	Sumi	nary of Results	179		
11	Reco	nciling Energy- and Momentum-Derived EM Masses	183		
	11.1	Energy and Momentum in the Electron EM Fields	183		
	11.2	Measure and Integration Space	189		
		11.2.1 Charge for a Conserved Current Density	190		
		11.2.2 Four-Momentum for a Conserved Energy–Momentum			
		Tensor	199		
	11.3	Role of the Binding Forces	212		
		11.3.1 Dynamics of a Collapsing Charged Spherical Shell	213		
		11.3.2 EM Fields of a Collapsing Charged Spherical Shell	216		
		11.3.3 Energy–Momentum Tensor for Collapsing Charged			
		Spherical Shell	221		
		11.3.4 The Main Argument	224		
		11.3.5 Conclusion Regarding the Collapsing Charge Shell	226		
		11.3.6 Collapse Model for the Charge Dumbbell	228		
	11.4	Why the Redefined Four-Momentum Is Lorentz Covariant	230		
	11.5	New Density for the Field Four-Momentum	234		
	11.6	Binding Forces Revisited	239		
		11.6.1 Model for the Ever-Stable Charged Shell	242		
		11.6.2 Contrast with Collapsing Shell Model	251		
		11.6.3 The Redefinition Approach Revisited	256		
		11.6.4 Whatever Happened to Lorentz Covariance?	261		
12	Rigidity in Relativity				
	12.1	Rigid Rods and Rigid Spheres	263		
		12.1.1 A Toy Electron	263		
		12.1.2 A Rigid Rod	266		
		12.1.3 Equation of Motion for Points on the Rod	268		
		12.1.4 A Frame for an Accelerating Observer	269		

Ind	lex			. 399
Ref	ference	s		. 397
14	Sumr	nary and	Conclusion	. 379
	13.5	Alternat	ives	. 375
	13.4	Higgs M	lechanism	. 366
		13.3.8	Gürsey-Radicati Mass Formula	. 365
		13.3.7	Gell-Mann-Okubo Mass Formula	. 361
		13.3.6	Coleman–Glashow Relation	. 359
		13.3.5	Baryons	. 345
		13.3.4	Light Quark Mesons	. 339
		13.3.3	Multiplets	. 333
		13.3.2	Quarkonium	. 329
		13.3.1	Quark Masses	. 328
	13.3	Quark B	ound States	. 326
		13.2.2	From Hydrogen to Positronium	. 319
		13.2.1	Generalities	. 318
	13.2	Bound S	tate Particles	. 318
	13.1	Energy a	and Mass	. 313
13	Mass	in Eleme	entary Particle Physics	. 313
	12.3	Conclus	ion	. 310
		12.2.7	Rigid Motion in Schwarzschild Spacetime	. 306
		12.2.6	Rigid Rotation	. 304
		12.2.5	Rigid Motion Without Rotation	. 301
		12.2.4	Examples of Rigid Motion	. 299
		12.2.3	Rate of Strain Tensor	. 295
		12.2.2	Rigid Motion of a Continuous Medium	. 294
		12.2.1	General Motion of a Continuous Medium	. 293
	12.2	Rigid M	otion	. 293
		12.1.10	A Note on the Pound–Rebka Experiment	. 287
		12.1.9	Rigid Electrons and Rigid Atoms	. 285
		12.1.8	Rigid Spheres and Instantaneous Transmission of Motion	. 281
		12.1.7	Behaviour of a Rigid Rod	. 279
		12.1.5	Properties of a Semi-Euclidean Frame	278
		1215	Lengths Measured by the Rigid Rod	273