Osami Matsushita · Masato Tanaka Hiroshi Kanki · Masao Kobayashi Patrick Keogh

Vibrations of Rotating Machinery

Volume 1. Basic Rotordynamics: Introduction to Practical Vibration Analysis

Contents

1	Intro	oduction	of Rotordynamics	1
	1.1	Vibrati	ion Problems in Rotating Machinery	1
		1.1.1	Varieties of Rotating Machinery	1
		1.1.2	Bearings	4
		1.1.3	Defects in Various Elements and Induced	
			Vibration	6
		1.1.4	Rotordynamics	6
	1.2	Types	of Vibration in Rotating Machinery	8
	1.3	Classif	ication of Vibration by Mechanism of Occurrence	9
	1.4	Simpli	fying Complicated Phenomena	11
2	Basi	cs for a	Single-Degree-of-Freedom Rotor	13
	2.1	Free V	'ibrations	13
		2.1.1	Natural Frequency	13
		2.1.2	Calculation of Spring Constant	14
		2.1.3	Conservation of Energy	15
		2.1.4	Mass Effects of Spring on Natural Frequency	15
	2.2	Dampe	ed Free Vibration	18
		2.2.1	Mass-Spring-Viscous Damped System	18
		2.2.2	Measurement of Damping Ratio	20
		2.2.3	Phase Lead/Lag Corresponding to Damping Ratio	24
	2.3	Unbala	ance Vibration of a Rotating Shaft	25
		2.3.1	Complex Displacement and Equation of Motion	25
		2.3.2	Complex Amplitude of Unbalance Vibration	26
		2.3.3	Resonance Curves	27
		2.3.4	Nyquist Plot	28
		2.3.5	Bearing Reaction Force at Resonance	30
		2.3.6	Transmissibility of Unbalance Vibration to	
			Foundation	32

	2.4	Evalua	tion of Q-Value	33
		2.4.1	Q-Value Criterion	34
		2.4.2	Measurement of Q-Value by the Half Power Point	
			Method	35
		2.4.3	Measurement of Q-Value Using a Nyquist Plot	34
		2.4.4	Re-evaluation of Q-Value for Rapid Acceleration	36
		2.4.5	Vibration in Passing Through a Critical Speed	39
3	Moda	l Analy	sis of Multi-Degree-of-Freedom Systems	41
	3.1	Equation	on of Motion for a Multi-dof System	41
		3.1.1	Multiple Mass Systems	41
		3.1.2	Equation of Motion for a Two-dof System	42
		3.1.3	Equation of Motion for a Multi-dof System	43
	3.2	Modal	Analysis (Normal Mode Method)	46
		3.2.1	Eigenvalue Analysis	46
		3.2.2	Orthogonality	46
		3.2.3	Reduced Order Modal Model	47
		3.2.4	Vibration Response	48
	3.3	Modal	Analysis of Beams.	53
		3.3.1	Natural Frequencies and Eigenmodes	53
		3.3.2	Correspondence of the Modal Analyses	
			for Multi-dof Systems and Continua	53
		3.3.3	Reduced Modal Models	55
		3.3.4	Modal Eccentricity	57
	3.4	Physic	al Models from Reduced Modal Models	60
		3.4.1	Modal Mass	60
		3.4.2	Equivalent Mass Method	62
	3.5 Approximation of Natural Frequencies		ximation of Natural Frequencies	63
		3.5.1	Rayleigh's Method	63
		3.5.2	Method Using Influence Coefficients	65
		3.5.3	Dunkerley's Formula	67
		3.5.4	Iterative Method (Power Method) [B4]	68
		3.5.5	Stiffness Matrix Method	70
		3.5.6	Transfer Matrix Method	73
4	Mode	Synthe	esis and Quasi-modal Method	79
	4.1	Mode	Synthesis Models	79
		4.1.1	Why Mode Synthesis?	79
		4.1.2	Guyan Reduction Method	80
		4.1.3	Mode Synthesis Models	84
	4.2	Quasi-	modal Models	90
		4.2.1	Principle of the Quasi-modal Model	90
		4.2.2	Examples of Quasi-modal Models	97
	4.3	Plant 7	Iransfer Function	99

5	Unb	alance a	nd Balancing	105
	5.1	Unbala	ance in a Rigid Rotor	105
		5.1.1	Static Unbalance and Dynamic Unbalance	105
		5.1.2	Static Unbalance and Couple Unbalance	107
		5.1.3	Adverse Effects of Unbalance Vibration	107
		5.1.4	Residual Permissible Unbalance in a Rigid	
			Rotor	108
	5.2	Field S	Single-Plane Balancing (Modal Balancing)	111
		5.2.1	Relationships among Rotational Pulse,	
			Unbalance and Vibration Vector	111
		5.2.2	Linear Relationship	114
		5.2.3	Identifying the Influence Coefficient	114
		5.2.4	Correction Mass	115
	5.3	Balanc	ing by the Influence Coefficient Method	117
	5.4	Modal	Balancing	122
	5.5	n-Plan	e Balancing or $(n + 2)$ -Plane Balancing?	126
		5.5.1	Comparison	126
		5.5.2	Number of Correction Planes Needed	
			for Universal Balancing.	131
		5.5.3	What Is the "2" in the $(n + 2)$ -Plane Method?	132
	5.6	Balanc	ing of a Rotor Supported by Magnetic Bearings	136
		5.6.1	Balancing by Feed-Forward (FF) Excitation	136
		5.6.2	Case Study: Centrifugal Compressor Supported	
			by AMBs [VB245]	141
	5.7	Balanc	ing without Rotational Pulses	143
		5.7.1	Four Run Method	143
		5.7.2	Balancing by Placing a Trial Mass	
			at a Regular Phase Pitch	146
	5.8	Solutio	on of Two-Plane Balancing	147
		5.8.1	Principle of Calculation	147
		5.8.2	In-Phase and Out-of-Phase Balancing	149
6	Cum	coonio I	Peret on Deter Witnetiene	1.50
U	Gyru	Dotord		153
	6.2	Curaia	ynamics	153
	0.2	6 2 1	Currenceria Memoria	155
		622	Equation of Mation of a Tax and MI 11	155
		0.2.2	Equation of Motion of a Top and Whirling	
	62	Notari	Solution of a Datan System	157
	0.5		Natural Engineer of Wilini'	158
		0.3.1	Indurral Frequency of Whiting	158
		0.3.4	Coloration of the Network E	160
		0.3.3	Calculation of the Natural Frequency	
			or whiring in Multi-dof Rotor System	162

6.4	Unbala	ance Vibration and Resonance	163		
	6.4.1	Condition for Unbalance Resonance			
		and Critical Speed	163		
	6.4.2	Resonance Curves for Unbalance Vibration	165		
	6.4.3	Calculation of Critical Speed of a Multi-dof			
		Rotor System.	167		
6.5	Vibrat	ion and Resonance with Base Excitation	168		
	6.5.1	Resonance Conditions	168		
	6.5.2	Forced Vibrational Solution for Base Excitation	170		
	6.5.3	Resonance Curves and Whirling Trajectories	172		
	6.5.4	Case Study: Aseismic Evaluation of a High-Speed			
		Rotor	173		
6.6	Ball P	assing Vibration and Resonance Due to Ball			
	Bearin	g Defects	176		
	6.6.1	Ball Bearing Specifications	176		
	6.6.2	Excitation by a Recess on Outer Race	176		
	6.6.3	Excitation by a Recess on Inner Race	177		
	6.6.4	Resonance Conditions	178		
	6.6.5	Case Study: Hard Disk Drive (HDD) [VB218]	178		
App	roximate	e Evaluation for Eigenvalues of Rotor-Bearing			
Syste	ems		181		
7.1	Equati	on of Motion for a Single-Degree-of-Freedom			
	Rotor	System	181		
7.2	Vibration Characteristics of a Symmetrically Supported				
	Rotor	System	183		
	7.2.1	Natural Frequencies of a Conservative System	184		
	7.2.2	Effects of Non-conservative System Parameters	185		
	7.2.3	Parameter Survey.	187		
7.3	Natura	I Frequencies of a Rotor Supported by Anisotropic			
	Bearin	gs	189		
	7.3.1	Natural Frequency of a Conservative System	189		
	7.3.2	Elliptical Whirling of a Conservative System	190		
	7.3.3	Influence of Gyroscopic Effect	192		
	7.3.4	Shape of Elliptical Whirling Orbit	193		
	7.3.5	Effects of Non-conservative Parameters	195		
	7.3.6	Parameter Survey.	197		
7.4	Vibrat	ion Characteristics of a Jeffcott Rotor	199		
	7.4.1	Equation of Motion	199		
	7.4.2	Vibration Characteristics	200		
	7.4.3	Real Mode Analysis	202		
	7.4.4	Complex Mode Analysis	204		
7.5	Analys	sis of Characteristics of Unbalance Vibration	205		
	7.5.1	Equation of Motion	205		

7

		7.5.2	Unbalance Vibration of an Isotropically Supported		
			Rotor System.	205	
		7.5.3	Unbalance Vibration of a Rotor Supported		
			by Anisotropic Bearings	206	
	7.6	Case St	tudy: Vibrations of a Flexible Rotor		
		with Cy	ylindrical Bearings	208	
		7.6.1	Critical Speed Map	208	
		7.6.2	Calculation of Complex Eigenvalues		
			and <i>Q</i> -Values	209	
		7.6.3	Root Loci	210	
		7.6.4	Resonance Curves for Unbalance Vibration	211	
8	Rotor	System	Evaluation Using Open-Loop Characteristics	213	
	8.1	Open-L	Loop Analysis of a Single-dof System	213	
		8.1.1	Open-Loop Frequency Response		
			of a Single-dof System	213	
		8.1.2	Measurement of Open-Loop Frequency Response	221	
	8.2	Modal	Open-Loop Frequency Response	222	
		8.2.1	Modal Model	222	
		8.2.2	Modal Open-Loop Frequency Response	224	
	8.3	Open-L	Loop Frequency Response of a Jeffcott Rotor	228	
		8.3.1	Series Coupling and Phase Lead Function	228	
		8.3.2	Open-Loop Frequency Response	229	
		8.3.3	Gain Cross-Over Frequency and Phase Margin	230	
		8.3.4	Precision of Approximate Solutions	232	
		8.3.5	Optimal Damping	234	
		8.3.6	Frequency Response	237	
9	Bridg	e Betwe	en Inertial and Rotational Coordinate Systems	241	
	9.1 Vibration Waveforms (Displacement and Stress Caused				
		by Stra	in)	241	
	9.2	Natural	Frequencies	243	
	9.3	Resona	nce Conditions	245	
	9.4	Represe	entation of Equation of Motion	246	
		9.4.1	Gyroscopic Moment and Coriolis Force	246	
		9.4.2	Case Study: Multi-blade Fan		
			(Sirocco Fan) [VB55]	248	
10	Vibra	tion An	alysis of Blade and Impeller Systems	253	
	10.1	Natural	Frequencies of Rotating Structure Systems.	253	
		10.1.1	Natural Frequencies of a Thin Disk	253	
		10.1.2	Natural Frequencies of Blades	257	
		10.1.3	Vibration Analysis of Cyclic Symmetry Structural		
			Systems	259	
		10.1.4	General Vibration Analysis of Blades and Impellers		
			in a Rotational Coordinate System	266	

	10.2	Vibratio	on and Resonance of Blades and Impellers	268
		10.2.1	Conditions for Blade-Shaft Coupled Vibration	268
		10.2.2	Natural Vibration Modes of Blades	
			and Blade Wheels	269
		10.2.3	External Forces Acting on Blades and Impellers	269
		10.2.4	Resonance Conditions of Blades	270
		10.2.5	Criterion of Blade Resonance: Campbell Diagram	273
		10.2.6	Case Study: Resonance in Impeller Blades of	
			Centrifugal Compressor [VB958]	278
	10.3	Blade/I	mpeller Vibrations Excited at Stationary Side	281
		10.3.1	Difference in Excitation Methods	
			and Resonance Conditions	281
		103.2	Representation of Vibration of Blades	201
		10.5.2	and Impellers in an Inertial Coordinate System	281
		1033	Resonance Condition 1	283
		10.3.4	Resonance Condition 2	205
		10.5.4		205
11	Stabi	lity Prob	olems in Rotor Systems	287
	11.1	Unstabl	le Vibration Due to Internal Damping	
		of a Ro	otor	287
		11.1.1	Equation of Motion	287
		11.1.2	Stability Condition.	289
		11.1.3	Stability Analysis	290
	11.2	Unstabl	le Vibration of an Asymmetric Rotor System	293
		11.2.1	Equation of Motion	293
		11.2.2	Overview of Vibration in an Asymmetric	
			Rotating Shaft	295
		11.2.3	Simulation of Vibration of Asymmetric Rotor	303
	11.3	Vibratio	on Due to Thermal-Bow by Contact Friction	306
		11.3.1	Thermal-Bow.	306
		11.3.2	Thermal-Bow Model	307
		11.3.3	Stability Analysis	309
		11.3.4	Physical Interpretation of Stability	310
		11.3.5	Simulation of Thermal-Bow Induced Vibration	312
	11.4	Therma	l-Bow Induced Vibration of an Active Magnetic	
		Bearing	g Equipped Rotor.	314
		11.4.1	Thermal-Bow Model	314
		11.4.2	Stability Analysis	315
		11.4.3	Physical Interpretation of Stability	317
		11.4.4	Simulation of Thermal Bow Induced Vibrations	318
12	Rotor	· Vibrati	ion Analysis Program: MyROT	321
	12.1	Data or	Rotor Systems	321
		12.1.1	Rotor Drawing and Discretization	321
		12.1.2	Data Organization of a Rotor System	323

Contents

12.2	Matrice	°S	326	
	12.2.1	Matrices in the Original System	326	
	12.2.2	Reduced Matrices in the Guyan Method	326	
	12.2.3	Matrices in the Mode Synthesis Models	329	
	12.2.4	Discretization of Beam Elements	331	
12.3	Analys	es Corresponding to Job Commands	332	
	12.3.1	Analysis Menu	332	
	12.3.2	Analysis Examples	334	
	12.3.3	EDIT Screen	339	
Appendices				
References				
Index			355	