John S. Gero Editor

Design Computing and Cognition '16

Contents

Part I Design Synthesis

Reducing Information to Stimulate Design Imagination	3
Novelty, Conventionality, and Value of Invention	23
Characterizing Tangible Interaction During a Creative Combination Task Mary Lou Maher, Lina Lee, John S. Gero, Rongrong Yu and Timothy Clausner	39
Dissecting Creativity: How Dissection Virtuality, Analogical Distance, and Product Complexity Impact Creativity and Self-Efficacy E.M. Starkey, A.S. McKay, S.T. Hunter and S.R. Miller	59
Part II Design Cognition—Design Approaches	
What Can We Learn from Autistic People About CognitiveAbilities Essential to Design? An Exploratory StudyAndy Dong and Ann Heylighen	81
Solution-Oriented Versus Novelty-Oriented Leadership Instructions: Cognitive Effect on Creative Ideation Hicham Ezzat, Marine Agogué, Pascal Le Masson and Benoit Weil	99
A Protocol Study of Cognitive Chunking in Free-Hand Sketching During Design Ideation by Novice Designers Omar M. Galil, Kirill Martusevich and Chiradeep Sen	115
A Systematic Review of Protocol Studies on Conceptual Design Cognition Laura Hay, Chris McTeague, Alex H.B. Duffy, Laura M. Pidgeon, Tijana Vuletic and Madeleine Grealy	135

Part	III	Design	Support
Part	III	Design	Support

Is Biologically Inspired Design Domain Independent?	157
A Meta-Analytic Approach for Uncovering Neural Activation Patterns of Sustainable Product Preference Decisions Kosa Goucher-Lambert, Jarrod Moss and Jonathan Cagan	173
Second Guessing: Designer Classification of Problem Definition Fragments Meghna Polimera, Mahmoud Dinar and Jami Shah	193
The Analysis and Presentation of Patents to Support Engineering Design Gokula Vasantha, Jonathan Corney, Ross Maclachlan and Andrew Wodehouse	209
Part IV Design Grammars	
Classifications of Shape Grammars	229
From Shape Computations to Shape Decompositions Djordje Krstic	249
Automated Induction of General Grammars for Design	267
Generative Shape Design Using 3D Spatial Grammars, Simulation and Optimization Luca Zimmermann, Tian Chen and Kristina Shea	279
Part V Design Cognition—Design Behaviors	
Comparing Two Approaches to Studying Communications in Team Design	301
Individual Differences in Tendency for Design Fixation Song Liang Lai and L.H. Shu	321
Functional Thinking: A Protocol Study to Map Modeling Behavior of Designers Ashwinraj Thiagarajan, Apurva Patel, Steven O'Shields and Joshua D. Summers	339
To Copy or Not to Copy: The Influence of Instructions in Design Fixation Experiments Luis A. Vasconcelos, Chih-Chun Chen, Eloise Taysom and Nathan Crilly	359

Part	VI	Design	Processes
------	----	--------	-----------

A Self-Organizing Map Based Approach to Adaptive System Formation	379
Dizhou Lu and Yan Jin	
Utilizing Markov Chains to Understand Operation Sequencing in Design Tasks Christopher McComb, Jonathan Cagan and Kenneth Kotovsky	401
Designerly Pick and Place: Coding Physical Model Making to Inform Material-Based Robotic Interaction Daniel Smithwick, David Kirsh and Larry Sass	419
Knowledge Distribution and the Effect of Design Tools	
on the Design Process	437
Part VII Design Synthesis	
A Heuristic Approach for the Automated Generation of Furniture Layout Schemes in Residential Spaces Sherif Abdelmohsen, Ayman Assem, Sherif Tarabishy and Ahmed Ibrahim	459
3DJ: An Analytical and Generative Design System for Synthesizing High-Performance Textures from 3D Scans	477
Automated Best Connected Rectangular Floorplans	495
Individual Coffee Maker Design Using Graph-Based Design Languages Claudia Tonhäuser and Stephan Rudolph	513
Part VIII Design Activity	
Translating Analytical Descriptions of Cities into Planning and Simulation Models Kinda Al-Sayed and Alan Penn	537
Exploring the Cognitive Dynamics of Product Appreciation	555
A Means to Characterise and Measure the Information Processes of Engineers Using Eye Tracking Duncan Boa and Ben Hicks	575
Personalised Specific Curiosity for Computational Design Systems	593

Kazjon Grace, Mary Lou Maher, David Wilson and Nadia Najjar

Part IX Design Knowledge

Traversing the Barriers to Using Big Data in Understating How High School Students Design Robin S. Adams, Molly Goldstein, Şenay Purzer, Jie Chao, Charles Xie and Saeid Nourian	613
Generalizability of Document Features for Identifying Rationale Benjamin Rogers, Connor Justice, Tanmay Mathur and Janet E. Burge	633
The Topology of Social Influence and the Dynamics of DesignProduct AdoptionSomwrita Sarkar and John S. Gero	653
Using Graph Complexity Connectivity Method to Predict Information from Design Representations: A Comparative Study C.V. Sri Ram Mohinder, Amaninder Gill and Joshua D. Summers	667
Identifying Sentiment-Dependent Product Features from Online Reviews Dedy Suryadi and Harrison M. Kim	685
Author Index	703