Contents

1	Introduction					
	1.1	Strongly Correlated Materials	1			
	1.2	Basic Models in Strongly Correlated Systems Theory	4			
	1.3	Methods for Models Investigation	6			
	1.4	Ab-initio Electronic Structure Calculation Methods	7			
2	Electronic Structure Calculations in One-Electron					
	Ap	proximation	9			
	2.1	Density Functional Theory and Electronic				
		Structure Calculations Methods				
		2.1.1 Density Functional Theory	9			
		2.1.2 Electronic Structure Calculations Methods Based				
		on DFT	11			
		2.1.3 Breakdown of Local Density Approximation				
		for Strongly Correlated Systems	14			
		2.1.4 Corrections for Electron–Electron Correlations	15			
	2.2	Determining Problem Hamiltonian from Density				
		Functional Theory	18			
		2.2.1 Problem Definition	18			
		2.2.2 Coulomb Interaction Hamiltonian	19			
		2.2.3 Double-Counting Problem for Coulomb Interaction	20			
		2.2.4 Wannier Functions as Coulomb Interaction				
		Hamiltonian Basis	21			
		2.2.5 Coulomb Parameter U Value from Constrain				
		DFT Calculation	26			
	2.3	Static Mean-Field Approximation: $LDA + U$ Method	30			
	2.4	LDA + U Method Applications	33			
		2.4.1 Mott Insulators: NiO, CoO, and CaCuO ₂	33			
		2.4.2 Charge Ordering: Fe_3O_4	35			
		2.4.3 Orbital Ordering: KCuF ₃	38			
		2.4.4 Orbital and Charge Ordering: Pr _{0.5} Ca _{0.5} MnO ₃	41			
		2.4.5 Spin Ordering: CaV_nO_{2n+1}	43			

3	Hubbard Model in Dynamical Mean-Field Theory				
	3.1	Reduc	ring Lattice Model to Effective Single		
		Impu	rity Anderson Model	47	
		3.1.1	Electronic Green Function	47	
		3.1.2	Single Impurity Anderson Model	49	
		3.1.3	Basic DMFT Equations	53	
		3.1.4	DMFT Equations for Bethe Lattice	55	
		3.1.5	Methods for Solution of Single Impurity		
		0.110	Anderson Model	55	
	3.2	Quant	tum Monte Carlo Method as Single		
		Impui	rity Anderson Model Solver	59	
		3.2.1	Hirsch–Fve Algorithm	59	
		3.2.2	Maximum Entropy Method for Spectral		
			Function Calculation	66	
		3.2.3	QMC for Single Impurity Anderson Model		
			with Orbital Degrees of Freedom	72	
		3.2.4	Projective Quantum Monte Carlo Method	73	
		3.2.5	Continuous-Time <i>QMC</i>	76	
	3.3	Hubb	ard Model Spectral Function in DMFT		
	0.0	Appro	ximation	82	
		3.3.1	Three Peak Spectral Structure for Half-Filling	82	
		3.3.2	Metal–Insulator Phase Transition	87	
	3.4	Hubba	ard Model with Deviation from Half-Filling	90	
		3.4.1	Quasiparticle Peak Evolution	90	
		3.4.2	Phase Diagram for $T = 0$	90	
		3.4.3	Spin-Polarized Case	94	
	3.5	Antife	erromagnetism	98	
	0.0	3.5.1	DMFT Equations with Antiferromagnetic		
			Order Parameter	98	
		3.5.2	NRG Method Results for AFM Phase	101	
	3.6	Super	conductivity in Two-Dimensional Hubbard Model	106	
		3.6.1	DMFT Equations for Superconducting State	106	
		3.6.2	Coexistence Problem for Superconducting		
		0.0.2	and Antiferromagnetic Order Parameters	109	
	3.7	Trans	port Properties and Susceptibility	111	
	0.1	3.7.1	Optical Conductivity	111	
		3.7.2	Magnetic Susceptibility	114	
4	DM	FT E	xtensions	121	
	4.1	t - J	Model as a Hubbard Model Limit	121	
		4.1.1	Hamiltonian and Green Function	121	
		4.1.2	DMFT Equations Derivation	123	
		4.1.3	Reformulation of <i>DMFT</i> Equations	125	
		4.1.4	Numerical Calculation Results	128	

	4.2 DMFT Extensions for Nonlocal Coulomb			
		and E	Exchange Interaction Case	. 130
		4.2.1	Hamiltonian and Green Function for Extended	
			Model	. 130
		4.2.2	EDMFT for Homogeneous System	. 132
		4.2.3	EDMFT for the System with Two Sublattices	. 134
		4.2.4	DMFT with Orbital Degeneracy	. 137
		4.2.5	QMC Impurity Solver for the Problem with Orbital	
			Degeneracy	. 139
		4.2.6	Exchange Interactions in QMC	. 140
		4.2.7	Continuous-Time QMC for Two-Orbital Model	. 141
	4.3	Takin	g into Account Spatial Fluctuations	. 144
		4.3.1	Heuristic Approach to DMFT Extension	
			for Spatial Fluctuations	. 144
		4.3.2	Dynamical Vertex Approximation	. 148
		4.3.3	Pseudogap	.151
		4.3.4	Dynamical Cluster Method	. 157
	4.4	Gener	ating Functional for Green Functions	. 161
		4.4.1	Baym-Kadanoff Functional	. 161
		4.4.2	Total Energy	. 162
	4.5	DMF	T for Systems with Disorder	. 164
		4.5.1	Anderson-Hubbard Model	.164
		4.5.2	Phase Diagram for Nonmagnetic State	. 165
		4.5.3	Optical Conductivity	. 169
F	Dom	india.	Anderson Model (DAM)	179
Э	Fer	TOULC .	Studios for DAM	179
•	9.1		DAM og a Dagia Madel for Hasser Fermion Systems	179
		5.1.1	PAM as a Basic Model for Heavy Fermion Systems	175
		0.1.2	DMET for DAM	. 170
	50	0.1.0	Studies by DMET Method	190
	0.2	PAM E 0 1	Studies by $DMFT$ Method	. 100
	۳۹	0.2.1 Vand	DMFI(NRG) Results at $I = 0$. 100
	ე.ა	Kond 5 2 1	O Lattice	. 100
		0.3.1	Numerical Density Croup Mathed for Single Impurity	. 100
		5.3.2	Numerical Renorm-Group Method for Single Impurity	107
		F 0 0	Kondo Problem Solution	. 187
		5.3.3	I wo Energy Scales	. 189
		5.3.4	Method	101
		EDE	Method	. 191
		ə.ə.ə	hughetic Ordering in Kondo Lattice Study	109
	F /	Dames	by Continuous-Time QMC Method	- 193 100
	ə. 4		DMET Equations for ad Madel with Classical Sair	100
		5.4.1	DMF1 Equations for sa-Model with Classical Spin	. 190
		5.4.2	Analysis of DMFT Equations Solution	. 198

.

6	Electronic Structure Calculations for Real Materials					
	by	$LDA \rightarrow$	$\vdash DMFT$ Method			
	6.1	Comb	aning Density Functional Theory and Dynamical			
		Mean	-Field Theory: $LDA + DMFT$ method			
		6.1.1	Coulomb Interaction			
		6.1.2	Computation of Lattice and Local Green Functions			
			in General Case			
		6.1.3	Total Energy Calculation in $LDA + DMFT \dots 206$			
	6.2	Early	Transition Metal Oxides: Mott Insulators and Strongly			
		Correlated Metals				
		6.2.1	SrVO ₃ : One Electron in Degenerate <i>d</i> -Band, Strongly			
			Correlated Metal			
		6.2.2	V_2O_3 : Two Electrons in <i>d</i> -Band with Trigonal			
			Crystal-Field Splitting			
		6.2.3	LiV_2O_4 : Heavy Fermion in <i>d</i> -Electron System			
	6.3	Late '	Iransition Metal Oxides: Charge Transfer Insulators 220			
		6.3.1	NiO: Band Structure for Charge Transfer Insulator 220			
		6.3.2	MnO: Metal–Insulator Transition with Pressure			
			and <i>d</i> -ion Magnetic Moment Collapse			
	6.4	f-Elec	ectron Systems: $\alpha - \gamma$ Transition in Ce			
	6.5	Mang	anites			
		6.5.1	Manganites Physical Properties			
		6.5.2	Electronic Model for Manganites			
		6.5.3	QMC for Systems with Electron–Lattice Coupling 235			
		6.5.4	$LDA + DMFT(QMC)$ Results for $La_{1-x}Sr_{x}MnO_{3}239$			
	6.6	High-	$T_{\rm c}$ Superconductors Based on Pnictides Compounds 244			
	6.7	The I	ist of Strongly Correlated Materials Investigated			
		by DI	<i>MFT</i> Method			
7	Cor	nclusio	n			
۸	Fur	etions	Integral and Partition Function 257			
A	run					
В	Gre	en Fu	nctions Formalism			
Re	feren	ices				
Ind	lex					