CONTENTS

Foreword Preface		xxi xxiii
1.1	Empirical Gas Laws, 1	
	1.1.1 The Combined Gas Law, 2	
1.0	1.1.2 Units, 2	
1.2	The Mole, 3	
1.3 1.4	Equations of State, 4	
1.4	Dalton's Law, 5 Partial Pressures, 5	
1.5	The Mole Fraction, 6	
1.5	Extensive and Intensive Variables, 6	
1.0	Graham's Law of Effusion, 6	
1./	Molecular Weight Determination, 6	
1.8	The Maxwell–Boltzmann Distribution, 7	
1.0	Figure 1.1 The Probability Density for Velocities of Ideal	
	Gas Particles at $T \neq 0., 8$	
	Boltzmann's Constant, 8	
	Figure 1.2 A Maxwell–Boltzmann Distribution Over	
	Discontinuous Energy Levels., 8	
1.9	A Digression on "Space", 9	
	Figure 1.3 The Gaussian Probability Density Distribution	
	in 3-Space., 10	
	The Gaussian Distribution in 2- and 3- and 4-Space, 10	
gers, Dona	ald W.	digitalisiert durch:
•	sical chemistry	IDS Basel Bern

2.1

22

2.3

2.4

2.5

2.6

2.7

 1.10 The Sum-Over-States or Partition Function, 10 Figure 1.4 The Probability Density of Molecular Velocities in a Spherical Velocity Space., 12
 Problems and Exercises, 12

Exercise 1.1, 12 Exercise 1.2, 13 Problems 1.1–1.13, 15–16 Computer Exercise 1.14, 16 Problems 1.15–1.18, 16–17

2 Real Gases: Empirical Equations

The van der Waals Equation, 18

The Compressibility Factor, 20

300 K (SigmaPlot 11.0[©]).. 22

a Function of Temperature., 22 2.3.1 Corresponding States, 23

Subcritical Fluids, 25

van der Waals Constants., 28

and for Nitrogen (upper curve)., 29

The Critical Density, 26

The Critical Temperature, 24

Boiling (1-4)., 25

Oxygen., 26

Problems and Exercises, 28 Exercise 2.1, 28

Exercise 2.2, 30

Reduced Variables, 27

2.4.1

2.4.2

The Virial Equation: A Parametric Curve Fit, 19

Figure 2.1 A Ouadratic Least-Squares Fit to an

Experimental Data Set for the Compressibility Factor of Nitrogen at 300 K and Low Pressures (Sigmaplot 11.0©)., 21

File 2.1 Partial Output From a Quadratic Least-Squares Curve Fit to the Compressibility Factor of Nitrogen at

Figure 2.2 The Second Virial Coefficient of Three Gases as

Figure 2.3 The Z = f(p) Curve for Two Different Gases or for the Same Gas at Two Different Temperatures., 23

Figure 2.4 Three Isotherms of a van der Waals Gas., 24 Figure 2.5 Conversion of a Liquid to Its Vapor Without

Figure 2.6 Density ρ Curves for Liquid and Gaseous

The Law of Corresponding States, Another View, 27 Figure 2.7 Compressibility Factors Calculated from the

Determining the Molar Mass of a Nonideal Gas. 28

Figure 2.8 Boyle's Law Plot for an Ideal Gas (lower curve)

Table 2.1 Observed Real Gas Behavior from 10 to 100 bar Expressed as (p, pV_m)., 30
Figure 2.9 Experimental Values of pV_m vs. p for one mode of a Real Gas., 30
Table 2.2 Observed Real Gas Behavior Expressed as (p, pV_m)., 31
Figure 2.10 Quadratic Real Gas Behavior., 32
Problems 2.1–2.15, 32–34
Figure 2.11 Cubic Real Gas Behavior., 34

3 The Thermodynamics of Simple Systems

- 3.1 Conservation Laws and Exact Differentials, 35
 3.1.1 The Reciprocity Relationship, 36
 3.2 Thermodynamic Cycles, 37 *Figure 3.1 Different Path Transformations from A to B.*, 38
 3.2.1 Hey, Let's Make a Perpetual Motion Machine!, 38
- 3.3 Line Integrals in General, 39
 Figure 3.2 Different Segments of a Curved Rod., 39
 3.3.1 Mathematical Interlude: The Length of an Arc, 40
 Figure 3.3 Pythagorean Approximation to the Short Arc of a Curve., 40
 - 3.3.2 Back to Line Integrals, 41
- 3.4 Thermodynamic States and Systems, 41
- 3.5 State Functions, 41
- 3.6 Reversible Processes and Path Independence, 42 Figure 3.4 The Energy Change for Reversible Expansion of an Ideal Gas., 43
- 3.7 Heat Capacity, 44
- 3.8 Energy and Enthalpy, 44
- 3.9 The Joule and Joule–Thomson Experiments, 46
 Figure 3.5 Inversion Temperature T_i as a Function of Pressure., 47
- 3.10 The Heat Capacity of an Ideal Gas, 48 Table 3.1 Heat Capacities and γ for Selected Gases., 48 Figure 3.6. Typical Heat Capacity as a Function of Temperature for a Simple Organic Molecule., 50
- 3.11 Adiabatic Work, 50 Figure 3.7 Two Expansions of an Ideal Gas., 51

Problems and Example, 52

Example 3.1, 52 Problems 3.1–3.12, 52–55 Figure 3.8 C = Diagonal Along x = 1 to y = 1., 53 Figure 3.9 C = Quarter-Circular Arc., 53

4 Thermochemistry

- 4.1 Calorimetry, 56
- 4.2 Energies and Enthalpies of Formation, 57
- 4.3 Standard States, 58
- 4.4 Molecular Enthalpies of Formation, 58 Figure 4.1 Combustion of C(gr) and CO(g)., 59 Figure 4.2 A Thermochemical Cycle for Determining $\Delta_f H^{298}$ (methane)., 60
- 4.5 Enthalpies of Reaction, 60
- 4.6 Group Additivity, 62
- 4.7 $\Delta_f H^{298}(g)$ from Classical Mechanics, 64
- 4.8 The Schrödinger Equation, 64
- 4.9 Variation of ΔH with T, 65
- 4.10 Differential Scanning Calorimetry, 66 Figure 4.3 Schematic Diagram of the Thermal Denaturation of a Water-Soluble Protein., 67

Problems and Example, 68 Example 4.1, 68 Problems 4.1–4.9, 68–70

5 Entropy and the Second Law

- 5.1 Entropy, 71
 - Figure 5.1 An Engine., 72
 - 5.1.1 Heat Death and Time's Arrow, 73
 - 5.1.2 The Reaction Coordinate, 73
 - 5.1.3 Disorder, 74
- 5.2 Entropy Changes, 74
 - 5.2.1 Heating, 74
 - 5.2.2 Expansion, 75
 - 5.2.3 Heating and Expansion, 75
- 5.3 Spontaneous Processes, 77
 - 5.3.1 Mixing, 77
 - 5.3.2 Heat Transfer, 77
 - 5.3.3 Chemical Reactions, 78
- 5.4 The Third Law, 78
 - 5.4.1 Chemical Reactions (Again), 79

Problems and Example, 80 Example 5.1, 80 Figure 5.2 C_p/T vs. T for Metallic Silver Ag(s)., 81 Problems 5.1-5.9, 81-83

6 The Gibbs Free Energy

- 6.1 Combining Enthalpy and Entropy, 84
- 6.2 Free Energies of Formation, 85

- 6.3 Some Fundamental Thermodynamic Identities, 86
- 6.4 The Free Energy of Reaction, 87
- 6.5 Pressure Dependence of the Chemical Potential, 87
 Figure 6.1 A Reaction Diagram for ΔG₄., 88
 6.5.1 The Equilibrium Constant as a Ouotient of Ouotients, 88

6.6 The Temperature Dependence of the Free Energy, 88

Problems and Example, 90

Example 6.1, 90 Problems 6.1–6.12, 90–92

7 Equilibrium

- 7.1 The Equilibrium Constant, 93
- 7.2 General Formulation, 94
- 7.3 The Extent of Reaction, 96
- 7.4 Fugacity and Activity, 97
- 7.5 Variation of the Equilibrium Constant with Temperature, 97 The van't Hoff Equation, 98
 - 7.5.1 Le Chatelier's Principle, 99
 - 7.5.2 Entropy from the van't Hoff Equation, 99
- 7.6 Computational Thermochemistry, 100
- 7.7 Chemical Potential: Nonideal Systems, 100
- 7.8 Free Energy and Equilibria in Biochemical Systems, 1027.8.1 Making ATP, the Cell's Power Supply, 103

Problems and Examples, 104

Example 7.1, 104 Example 7.2, 105 Problems 7.1–7.7, 105–106

8 A Statistical Approach to Thermodynamics

- 8.1 Equilibrium, 108
 Figure 8.1 A Two-Level Equilibrium., 109
 Figure 8.2 A Two-Level Equilibrium., 109
- 8.2 Degeneracy and Equilibrium, 109
 Figure 8.3 A Degenerate Two-Level Equilibrium., 110
 Figure 8.4 A Degenerate Two-Level Equilibrium., 110
 Figure 8.5 A Two-Level Equilibrium with Many A and Many B Levels., 111
- 8.3 Gibbs Free Energy and the Partition Function, 112
- 8.4 Entropy and Probability, 113
- 8.5 The Thermodynamic Functions, 113 Table 8.1 Thermodynamic Functions (Irikura, 1998)., 114
- 8.6 The Partition Function of a Simple System, 114
- 8.7 The Partition Function for Different Modes of Motion, 116

93

8.8 The Equilibrium Constant: A Statistical Approach, 117

8.9 Computational Statistical Thermodynamics, 119 Table 8.2 Some Computed Partition Functions for Molecular and Atomic Sodium., 120

Problems and Examples, 120

Example 8.1, 120 Example 8.2, 121 Problems 8.1–8.9, 122–123

9 The Phase Rule

- 9.1 Components, Phases, and Degrees of Freedom, 124
- 9.2 Coexistence Curves, 125
 Figure 9.1 Pure Water in One Phase (left) and Two Phases (right)., 126
 Figure 9.2 A Liquid–Vapor Coexistence Curve., 127
 Figure 9.3 A Single-Component Phase Diagram., 128
- 9.3 The Clausius--Clapeyron Equation, 128
- 9.4 Partial Molar Volume, 129
 Figure 9.4 Total Volume of an Ideal Binary Solution., 130
 Figure 9.5 Volume Increase (or Decrease) Upon Adding Small Amounts of Solute n₂ to Pure Solvent., 130
 9.4.1 Generalization, 130
 Figure 9.6 Partial Molar Volume as the Slope of

V vs. n₂., 131 Figure 9.7 Volume Behavior of a Nonideal Binary Solution., 131

- 9.5 The Gibbs Phase Rule, 134
- 9.6 Two-Component Phase Diagrams, 134
 9.6.1 Type 1, 135
 Figure 9.8 A Type I Phase Diagram., 135
 9.6.2 Type II, 136
 Figure 9.9 A Type II Phase Diagram., 135
 9.6.3 Type III, 137
 Figure 9.10 A Type III Phase Diagram., 137
- 9.7 Compound Phase Diagrams, 137 Figure 9.11 A Compound Phase Diagram with a Low Boiling Azeotrope., 138
- 9.8 Ternary Phase Diagrams, 138 Figure 9.12 A Ternary Phase Diagram with a Tie Line., 139

Problems and Examples, 139 Example 9.1, 139 Figure 9.13 The Liquid-Vapor Coexistence Curve of Water Leading to $\Delta_{vap} H(H_2O) = 44.90 \text{kJmol}^{-1}$, 140 Example 9.2, 140
Figure 9.14 A Ternary Phase Diagram in which B and C Are Partially Miscible., 141
Problems 9.1–9.9, 141–143

10 Chemical Kinetics

10.1 First-Order Kinetic Rate Laws, 144 Figure 10.1 First-Order Radioactive Decay., 146 Figure 10.2 Logarithmic Decay of a Radioactive Element., 147 10.2 Second-Order Reactions, 147 10.3 Other Reaction Orders, 149 10.3.1 Mathematical Interlude: The Laplace Transform, 149 Back to Kinetics: Sequential Reactions, 150 10.3.2 10.3.3 Reversible Reactions, 151 10.4 Experimental Determination of the Rate Equation, 154 10.5 Reaction Mechanisms, 154 10.6 The Influence of Temperature on Rate, 156 Figure 10.3 An Activation Energy Barrier Between an Unstable Position and a Stable Position., 156 Figure 10.4 Enthalpy Level Diagram for an Activated Complex [B]., 157 Figure 10.5 An Activation Barrier., 157 Figure 10.6 A Boltzmann Distribution of Molecular Speeds., 158 10.7 Collision Theory, 158 10.8 Computational Kinetics, 159 Problems and Examples, 160 Example 10.1, 160 Example 10.2, 160 Figure 10.7 First-Order Fluorescence Decline from Electronically Excited Iodine in Milliseconds., 161 Figure 10.8 The Natural Logarithm of Relative Intensity vs. Time for Radiative Decay., 161 Problems 10.1–10.10, 162–164

11 Liquids and Solids

11.1 Surface Tension, 165
Figure 11.1 Intermolecular Attractive Forces Acting Upon Molecules at an Air-Water Interface., 166
Figure 11.2 Stretching a Two-Dimensional Membrane by Moving an Edge of Length I., 166
Figure 11.3 Stretching a Two-Dimensional Liquid Bimembrane., 167
Figure 11.4 Capillary Rise in a Tube of Radius R., 167

Heat Capacity of Liquids and Solids, 168 112 Figure 11.5 Heat Capacity as a Function of Temperature., 168 11.3 Viscosity of Liquids, 169 Figure 11.6 Approximation of Laminar Flow Inside a Tube. 169 11.4 Crystals, 170 Figure 11.7 Close Packing of Marbles Between Two Sheets. 171 Figure 11.8 A Less Efficient Packing of Marbles., 172 Figure 11.9 Bragg's Law for Constructive Reflection., 173 X-Ray Diffraction: Determination of Interplanar 11.4.1 Distances, 173 Figure 11.10 A Face-Centered Cubic Unit Cell., 174 11.4.2 The Packing Fraction, 174 Figure 11.11 A Two-Dimensional Unit Cell for Packing of Discs., 175 Figure 11.12 A Simple Cubic Cell., 175 Bravais Lattices, 176 11.5 Table 11.1 The Bravais Crystal Systems and Lattices., 176 11.5.1 Covalent Bond Radii, 176 11.6 Computational Geometries, 177 11.7 Lattice Energies, 177 Problems and Exercise, 178 Exercise 11.1, 178 Figure 11.13 The Born-Haber Cycle for Nal., 179 Problems 11.1-11.8, 179-181 Figure 11.14 Close Packing (left) and Simple Square Unit Cells (right)., 180 Figure 11.15 A Body-Centered Primitive Cubic Cell., 180

12 Solution Chemistry

- 12.1 The Ideal Solution, 182 Figure 12.1 Entropy, Enthalpy, and Gibbs Free Energy Changes for Ideal Mixing at T > 0., 183
- 12.2 Raoult's Law, 183 Figure 12.2 Partial and Total Pressures for a Raoult's Law Solution., 184
- 12.3 A Digression on Concentration Units, 184
- 12.4 Real Solutions, 185 Figure 12.3 Consistent Positive Deviations from Raoult's Law., 185
- 12.5 Henry's Law, 186Figure 12.4 Henry's Law for the Partial Pressure of Component B as the Solute., 186
 - 12.5.1 Henry's Law Activities, 186

12.6 Vapor Pressure, 187

 12.7 Boiling Point Elevation, 188
 Figure 12.5 Boiling of Pure Solvent (left) and a Solution of Solvent and Nonvolatile Solute (right)., 189

- 12.8 Osmotic Presure, 191 Figure 12.6 Osmotic Pressure, π ., 192
- 12.9 Colligative Properties, 194Figure 12.7 Lowering of the Freezing Point of Water by Ammonia., 195

Problems, Examples, and Exercise, 195
Example 12.1, 195
Table 12.1 Vapor Pressures of Acetone over Dilute Binary Solutions of Acetone in Diethyl Ether., 196
Example 12.2, 196
Exercise 12.1, 198
Exercise 12.2, 199
Problems 12.1–12.10, 199–202

13 Coulometry and Conductivity

13.1	Electrical Potential, 203
	13.1.1 Membrane Potentials, 203
	Figure 13.1 The Potential Drop Between Charged Plates
	Is $V = \phi(0) - \phi(l)$, 204
	Figure 13.2 An Ion-Permeable Membrane (Schematic)., 204
13.2	Resistivity, Conductivity, and Conductance, 205
13.3	Molar Conductivity, 206
	Figure 13.3 Kohlrausch's Law for Conductance of the
	Strong Electrolytes HCl and NaOAc and the Weak
	Electrolyte HOAc., 207
13.4	Partial Ionization: Weak Electrolytes, 208
13.5	Ion Mobilities, 209
	Figure 13.4 Moving Boundary Determination of the
	Mobility of H ⁺ ., 210
13.6	Faraday's Laws, 211
13.7	Mobility and Conductance, 211
13.8	The Hittorf Cell, 211
	Figure 13.5 A Three-Compartment Hittorf Cell., 212
13.9	Ion Activities, 213
Probl	ems and Examples, 215
	Example 13.1, 215
	Example 13.2, 216
	Example 13.3, 216
	Problems 13.1–13.11, 217–219

14 Electrochemical Cells

- 14.1 The Daniell Cell, 220
- 14.2 Half-Cells, 221 Figure 14.1 The Hydrogen Half-Cell., 222
- 14.3 Half-Cell Potentials, 222 Table 14.1 A Few Selected Reduction Potentials., 223
- 14.4 Cell Diagrams, 223
- 14.5 Electrical Work, 224
- 14.6 The Nernst Equation, 224
- 14.7 Concentration Cells, 225
- 14.8 Finding E° , 226 Figure 14.2 Extrapolation to $E^{\circ} = 0.2223$ for the Standard Hydrogen–Silver–Silver Chloride Cell., 228
- 14.9 Solubility and Stability Products, 228
- 14.10 Mean Ionic Activity Coefficients, 229
- 14.11 The Calomel Electrode, 229
- 14.12 The Glass Electrode, 230

Problems and Examples, 230
Example 14.1, 230
Example 14.2, 231
Figure 14.3 The Mean Activity Coefficient of HCl as a Function of m^{1/2}., 232
Problems 14.1–14.9, 232–234

15 Early Quantum Theory: A Summary

15.1	The Hydrogen Spectrum, 235
	Figure 15.1 The Hydrogen Emission Spectrum., 236
	Figure 15.2 The First Six Solutions of the H Atom Energy
	Calculated by Bohr (1913)., 236
15.2	Early Quantum Theory, 236
	Schrödinger, Heisenberg, and Born: An Introduction, 237
	The Hamiltonian Operator, 237
15.3	Molecular Quantum Chemistry, 238
	Heitler and London, 238
	Hartree and Fock, 239
	Antisymmetry and Determinantal Wave Functions, 240
15.4	The Hartree Independent Electron Method, 240
15.5	A Digression on Atomic Units, 243
Prob	lems and Examples, 243
	Example 15.1, 243
	Example 15.2, 244
	Problems 15.1–15.9, 246–247

16 Wave Mechanics of Simple Systems

16.1	Wave Motion, 248
	Figure 16.1 Graph of $sin(x)$, $sin(2x)$, and $sin(3x)$ Shown
	over the Interval $[0, \pi]$., 249
16.2	Wave Equations, 249
	Eigenvalues and Eigenvectors, 250
16.3	The Schrödinger Equation, 250
16.4	Quantum Mechanical Systems, 251
	Ψ is a Vector, 251
	The Eigenfunction Postulate, 252
16.5	The Particle in a One-Dimensional Box, 253
	Figure 16.2 Wave Forms for the First Three Wave
	Functions of the Particle in a Box., 254
	Fundamentals and Overtones, 254
	Figure 16.3 A Mathcad© Sketch of the Born Probability
	Densities at the First Three Levels of the Particle in
	a Box., 255
16.6	The Particle in a Cubic Box, 255
	Separable Equations, 256
	16.6.1 Orbitals, 257
	Figure 16.4 The Ground State Orbital of a
	Particle Confined to a Cubic Box., 257
	16.6.2 Degeneracy, 257
	Figure 16.5 The First Excited State of a Particle
	Confined to a Cubic Box., 257
	16.6.3 Normalization, 257
	Figure 16.6 The Degenerate Energy Levels for
	the Hydrogen Atom., 258
16.7	The Hydrogen Atom, 258
	The Radial Equation and Probability "Shells", 258
16.8	Breaking Degeneracy, 259
	Figure 16.7 Reduced Degeneracy in Energy Levels for
	Hydrogen-Like Atoms., 260
	16.8.1 Higher Exact Solutions for the Hydrogen Atom, 260
	Table 16.1 The First Six Wave Functions for Hydrogen., 261
	Table 16.2 The First Three s Wave Functions for
	Hydrogen (Simplified Form)., 261
	Figure 16.8 Roots of the Radial 3s Wave Function of
	Atomic Hydrogen as a Function of Distance r., 261
	Figure 16.9 The Radial Probability Density for
	an Electron in the 3s Orbital of Hydrogen., 262
16.9	Orthogonality and Overlap, 262
	Figure 16.10 The Radial Node of the 2p Atomic
	Orbital., 262

Figure 16.11 Favorable sp_x and Unfavorable sp_z Overlap of Orbitals Depending upon Orbital Symmetry., 263

 16.10 Many-Electron Atomic Systems, 263 *The Hartree Method*, 263 Problems 16.1–16.9, 264–266

17 The Variational Method: Atoms

- 17.1 More on the Variational Method, 267
- 17.2 The Secular Determinant, 268
- A Variational Treatment for the Hydrogen Atom: The 17.3 Energy Spectrum, 271 17.3.1 Optimizing the Gaussian Function, 272 Simultaneous Minima, 272 The Exact Wave Function, 272 The Gaussian Approximation, 272 17.3.2 A GAUSSIAN© HF Calculation of E_{atom} : Computer Files, 273 File 17.1 Gaussian gen Input for the Hydrogen Atom., 273 File 17.2 Energies Drawn from the Gaussian gen Output File for the Hydrogen Atom., 273 17.4 Helium, 274 17.4.1 An SCF Variational Ionization Potential for Helium, 275 17.5 Spin. 278 17.6 Bosons and Fermions, 278 17.7 Slater Determinants, 279 17.8 The Aufbau Principle, 280 17.9 The SCF Energies of First-Row Atoms and Ions, 281 Figure 17.1 Calculated IP₁ for Elements 1–10., 281 17.10 Slater-Type Orbitals (STO), 282 Table 17.1 Slater's Rules., 282 17.11 Spin-Orbit Coupling, 283 Figure 17.2 Linear and Angular Momentum Vectors., 283 Problems and Examples, 283 Example 17.1, 283 File 17.3 Mathcade Calculation of the Ionization
 - Potential of Helium., 284 Example 17.2, 284 Problems 17.1–17.9, 285–286

18 Experimental Determination of Molecular Structure

18.1 The Harmonic Oscillator, 287 Figure 18.1 A Classical Harmonic Oscillator., 288

267

18.2	The Hooke's Law Potential Well, 289
	Figure 18.2 Parabolic Potential Wells for the Harmonic
	Oscillator., 290
18.3	Diatomic Molecules, 290
18.4	The Quantum Rigid Rotor, 290
	Figure 18.3 Energy Levels within a Simple Rotor., 291
18.5	Microwave Spectroscopy: Bond Strength and Bond
	Length, 292
18.6	Electronic Spectra, 292
	Figure 18.4 Electronic Promotion in Alkenes., 293
	Figure 18.5 Absorption Wavelengths of Conjugated
	Polyalkenes., 293
18.7	Dipole Moments, 294
	Figure 18.6 A Charged Parallel Plate Capacitor., 294
	Figure 18.7 A Charged Capacitor with a Dielectric., 294
	Dielectric Constant, 294
	Polarizability, 295
	18.7.1 Bond Moments, 296
	Figure 18.8 The Total Dipoles of Two
	Dichloroethene Isomers., 296
18.8	Nuclear Magnetic Resonance (NMR), 297
	18.8.1 Spin–Spin Coupling, 298
	Figure 18.9 Schematic NMR Spectrum of
	Ethanol, CH ₃ CH ₂ OH., 299
	Magnetic Resonance Imaging (MRI), 299
18.9	Electron Spin Resonance, 299
Probl	ems and Examples, 299
	Example 18.1, 299
	Figure 18.10 Schematic Diagram of a Vibration–Rotation
	Band., 300
	Example 18.2, 301
	Problems 18.1–18.13, 301–304
	Figure 18.11 The Vibration–Rotation Spectrum of CO., 302

19 Classical Molecular Modeling

19.1	Enthalpy: Additive Methods, 305
	Figure 19.1 Enthalpies of Formation of "Adjacent"
	n-Alkanes., 306
	Group Additivity, 306
19.2	Bond Enthalpies, 306
	Bond Additivity, 306
	Figure 19.2 Bond Enthalpies Calculated in CH_2 , from the
	Reference State of Gaseous Atoms (top), and Relative
	to Elements in their Standard State $(H_2(g))$ and
	C(graphite))., 307

19.3 Structure, 307
Figure 19.3 Structurally Distinct Alkane Conformers
Resulting from the Tetrahedral Symmetry of Carbon., 308
Force Constants and Parameters, 308
Energy Equations, 309
Force Fields, 309
The Allinger MM Method, 309

19.4 Geometry and Enthalpy: Molecular Mechanics, 309

- 19.5 Molecular Modeling, 310
- 19.6 The GUI, 310
 Figure 19.4 Visualization of the Output for the Ethane Molecule (PCModel 8.0©)., 310
- Finding Thermodynamic Properties, 311
 File 19.1 Partial MM4 Enthalpy Output for Ethane., 311
- 19.8 The Outside World, 312
- 19.9 Transition States, 313

Problems and Examples, 314
Example 19.1, 314
Example 19.2, 314
File 19.2 An Input File for Water., 314
File 19.3 The MM4 Geometry Output TAPE9.MM4 for Water., 315
Example 19.3, 315
File 19.4 MM4 Input Geometry for Methane., 316
File 19.5 MM4 Output Geometry for Methane., 316
Problems 19.1–19.10, 316–317

20 Quantum Molecular Modeling

- 20.1 The Molecular Variational Method, 318
- 20.2 The Hydrogen Molecule Ion, 319
 Figure 20.1 The Hydrogen Molecule Ion, H⁺₂., 319
 Figure 20.2 Bonding and Antibonding Orbitals for H⁺₂., 321
 Figure 20.3 Bonding and Antibonding Solutions for
 the H⁺₂., 322
- 20.3 Higher Molecular Orbital Calculations, 322
- 20.4 Semiempirical Methods, 323
- 20.5 Ab Initio Methods, 324
- 20.6 The Gaussian Basis Set, 324 Figure 20.4 The 1s STO (solid line) and a Gaussian Approximation (dotted line)., 324
 - File 20.1 (Input) A Four-Parameter Gaussian File for the Hydrogen Atom., 325
 - Figure 20.5 Comparison of the 1s STO of Hydrogen with an Arbitrarily Parameterized Two-Gaussian Function $\phi(r) = 0.40e^{-1.0r^2} + 0.60e^{-0.25r^2}$, 326

	File 20.2 (Output) The STO-2G Basis Set Written as a
	Is Orbital Consisting of Functions with Arbitrarily
	Selected Exponents 1.00 and 0.25., 326
20.7	Stored Parameters, 326
	File 20.3 (Input) An STO-2G Input File Using a Stored
	Basis Set., 327
	File 20.4 (Output) Stored Parameters for the STO-2G
	Basis Set., 327
	Figure 20.6 Approximation to the 1s Orbital of Hydrogen
	by 2 Gaussians., 328
20.8	Molecular Orbitals, 328
	File 20.5 (Input) A Molecular Orbital Input File for H ₂ ., 329
	z-Matrix Format, 329
	File 20.6 (Input) A GAUSSIAN Input File for H ₂ ., 330
	20.8.1 GAMESS, 330
	File 20.7 (Input) GAMESS File for Hydrogen Molecule., 330
20.9	Methane, 331
	File 20.8 One of Many Possible STO-2G Optimized
	Coordinates Sets for Methane., 331
20.10	Split Valence Basis Sets, 331
20.11	Polarized Basis Functions, 332
20.12	Heteroatoms: Oxygen, 332
	File 20.9 Input file for a GAUSSIAN© STO-3G
	Calculation on Methanol., 333
	File 20.10 Optimized Geometry from a GAUSSIAN©
	STO-3G Calculation on Methanol (Internal and
	Cartesian Coordinates)., 334
20.13	Finding $\Delta_f H^{298}$ of Methanol, 334
	Figure 20.7 The G3(MP2) Thermochemical Cycle for
	Determination of $\Delta_{\rm f} H^{298}$ of Methanol., 335
20.14	Further Basis Set Improvements, 336
20.15	Post-Hartree–Fock Calculations, 336
20.16	Perturbation, 337
20.17	Combined or Scripted Methods, 338
	Scheme 20.1 A Computational Chemical Script., 338
	Figure 20.8 Additive Extrapolations in the G3(MP2)
	Scripted Method., 339
	File 20.11 Partial GAUSSIAN G3(MP2) Output., 339
20.18	Density Functional Theory (DFT), 339
Probl	ems And Examples, 340
	Example 20.1, 340
	File 20.12 A z-Matrix Input File for Methane., 340
	Example 20.2, 340
	File 20.13 Control Lines for a GAMESS Calculation., 341
	Example 20.3, 341
	Problems 20.1–20.9, 342–343

Photochemistry and the Theory of Chemical Reactions 21

- 21.1 Einstein's Law, 344
- 21.2 Quantum Yields, 345 Table 21.1 Some Experimental Quantum Yields., 345 Figure 21.1 Mechanism for Fluorescent and Phosphorescent Light Emission., 346 Lipid Peroxidation, 346
 - 21.2.1
 - Ozone Depletion, 347 21.2.2
- 21.3 Bond Dissociation Energies (BDE), 348
- Lasers, 348 21.4
- 21.5 **Isodesmic Reactions**, 349
- 21.6 The Eyring Theory of Reaction Rates, 349
- The Potential Energy Surface, 350 21.7 Figure 21.2 Eyring Potential Energy Plot for the Reaction $H + H-H \rightarrow H-H + H.$, 350 Figure 21.3 Activation of the Symmetrical Reaction $H + H - H \rightarrow H - H + H$., 351 Figure 21.4 The Enthalpy of Activation of an Exothermic Reaction., 351 **Optical Inversion**, 352 21.7.1 Figure 21.5 An Optically Active Species., 352 Figure 21.6 Inversion of Optical Activity., 352 21.8 The Steady-State Pseudo-Equilibrium, 353 21.9 Entropies of Activation, 354 The Structure of the Activated Complex, 355 21.10 Problems and Examples, 355 Example 21.1, 355

Example 21.2, 356 Problems 21.1-21.8, 357-359

References	361
Answers to Selected Odd-Numbered Problems	365
Index	369