Contents

1	Coo	perative Game Theory	1
	1.1	Aims and Outline of the Book	2
	1.2	Game Forms	5
		1.2.1 The Normal Form	7
		1.2.2 The Characteristic Function Form	9
	1.3	Cooperative Games	12
		1.3.1 Basic Properties of Cooperative Games	13
		1.3.2 The Standard Basis	14
		1.3.3 The Unanimity Basis	15
		1.3.4 Essential Games and Imputations	18
	1.4	Multilinear Extensions	20
	1.5	Problems	25
2	The	Core of a Cooperative Game	29
	2.1	Basic Properties of the Core	30
		2.1.1 Representing the Core of a Three Player Game	31
		2.1.2 The Core and Domination	35
		2.1.3 Existence of Core Imputations	37
	2.2	The Core Based on a Collection of Coalitions	39
		2.2.1 Balanced Collections	45
		2.2.2 Strongly Balanced Collections	47
		2.2.3 Lattices and Hierarchies	48
	2.3	Core Covers and Convex Games	51
		2.3.1 The Weber Set	51
		2.3.2 The Selectope	53
	2.4	Appendix: Proofs of the Main Theorems	55
	2.5	Problems	68
3	Axio	matic Value Theory	71
	3.1	Equivalent Formulations of the Shapley Value	72
	3.2	Three Axiomatizations of the Shapley Value	76
		3.2.1 Shapley's Axiomatization	77

		3.2.2 Young's Axiomatization	80
	3.3	The Shapley Value as a Utility Function	83
	3.4		89
	3.5	Appendix: Proofs of the Main Theorems	92
	3.6	Problems 1	01
4	The	Cooperative Potential	07
	4.1	A Potential Function for Cooperative Games	
	4.2	The Cooperative Potential and the Shapley Value	
	4.3	Consistency and the Reductionist Approach 1	
	4.4	Beyond the Cooperative Potential	
		4.4.1 Value-Based Potentials	
		4.4.2 Share Functions and Share Potentials	
	4.5	Appendix: Proofs of the Main Theorems	
	4.6	Problems 1	
5	Dire	ected Communication Networks1	43
-	5.1	Directed Networks	
	5.2	Measuring Dominance in Directed Networks 1	
		5.2.1 The Degree Measure	
		5.2.2 The β -Measure	
		5.2.3 Iterated Power Measures 1	
	5.3	Hierarchical Allocation Rules on Network Games 1	
		5.3.1 Cooperative Network Situations	
		5.3.2 Network Myerson Values 1	
		5.3.3 The Hierarchical Payoff Property 1	
		5.3.4 The α -Hierarchical Value	
	5.4	Appendix: Proofs of the Main Theorems 1	75
	5.5	Problems 1	
6	Coo	perative Theories of Hierarchical Organizations	89
	6.1	Games with a Permission Structure 1	
		6.1.1 The Conjunctive Approach 1	
		6.1.2 The Disjunctive Approach 1	98
	6.2	Shapley Permission Values	10
		6.2.1 The Conjunctive Permission Value	10
		6.2.2 The Disjunctive Permission Value	16
	6.3	Modeling Economic Phenomena2	19
	6.4	Appendix: Proofs of the Main Theorems	
	6.5	Discussion: More About the Disjunctive Restriction	
	6.6	Problems	39
Re	feren	ces 2	45
Ind	lex .		51