List of Tables			xiii
List of Figures			xvii
Preface			xix
1.	GEN	1	
	1.1	Introduction	1
	1.2	Single Input and Single Output	2
	1.3	Two Inputs and One Output Case	6
	1.4	One Input and Two Outputs Case	8
	1.5	Fixed and Variable Weights	12
	1.6	Summary and Conclusion	13
	1.7	Problem Supplement for Chapter 1	15
2.	BAS	21	
	2.1	Introduction	21
	2.2	Data	22
	2.3	The CCR Model	23
	2.4	From a Fractional to a Linear Program	23
	2.5	Meaning of Optimal Weights	25
	2.6	Explanatory Examples	25
		2.6.1 Example 2.1 (1 Input and 1 Output Case)	26
	0.7	2.6.2 Example 2.2 (2 Inputs and 1 Output Case)	27
	2.7	Illustration of Example 2.2	30
	2.8	Summary of Chapter 2	32
	2.9	Selected Bibliography	33
	2.10	Problem Supplement for Chapter 2	34
3.	CCR	MODEL AND PRODUCTION CORRESPONDENCE	41
	3.1	Introduction	41
	3.2	Production Possibility Set	42
	3.3	The CCR Model and Dual Problem	43
	3.4	The Reference Set and Improvement in Efficiency	47
			vii

viii INTRODUCTION TO DATA ENVELOPMENT ANALYSIS AND ITS USES

	3.5	Theorems on CCR-Efficiency	48
			50
		3.6.1 Computational Procedure for the CCR Model	50
		5.6.2 Duta Envelopment / metybe and the and	52
		5,0.5 Determination of Meights (= manipholo)	52 52
	2.7	3.6.4 Reasons for Solving the CCR Model Using the Envelopment Form	53
			58
		The Output-Oriented Model	60
	3.9	Discretionary and Non-Discretionary Inputs	64
		Summary of Chapter 3	
		Notes and Selected Bibliography	65
		Related DEA-Solver Models for Chapter 3	67 62
	3.13	Problem Supplement for Chapter 3	68
4.	ALT	ERNATIVE DEA MODELS	83
	4.1	Introduction	83
	4.2	The BCC Models	85
		4.2.1 The BCC Model	87
		4.2.2 The Output-oriented BCC Model	89
	4.3	The Additive Model	90
		4.3.1 The Basic Additive Model4.3.2 Translation Invariance of the Additive Model	90 02
	4.4	A Slacks-Based Measure of Efficiency (SBM)	93 05
	7.7	4.4.1 Definition of SBM	95 96
		4.4.2 Interpretation of SBM as a Product of Input and Output Inefficiencies	97
		4.4.3 Solving SBM	97
		4.4.4 SBM and the CCR Measure	99
		4.4.5 The Dual Program of the SBM Model	100
		4.4.6 Oriented SBM Models4.4.7 A Weighted SBM Model	101
		4.4.8 Numerical Example (SBM)	101
	4.5	Russell Measure Models	102
	4.6	Summary of the Basic DEA Models	102
	4.7	Summary of Chapter 4	104
	4.8	Notes and Selected Bibliography	106
	4.9	Appendix: Free Disposal Hull (FDH) Models	107
) Related DEA-Solver Models for Chapter 4	107
		Problem Supplement for Chapter 4	109
_			110
5.		TURNS TO SCALE	119
	5.1	Introduction	119
	5.2	Geometric Portrayals in DEA	122
	5.3	BCC Returns to Scale	124
	5.4	CCR Returns to Scale	126
	5.5	Most Productive Scale Size	131
	5.6	Further Considerations	135

	5.7	Relaxat	ion of the Convexity Condition	138	
	5.8	Decom	position of Technical Efficiency	140	
		5.8.1	Scale Efficiency	140	
			Mix Efficiency	142	
		5.8.3	An Example of Decomposition of Technical Efficiency	143	
	5.9		mple of Returns to Scale Using a Bank Merger Simulation	144	
			Background	144	
			Efficiencies and Returns to Scale	144	
			The Effects of a Merger	147	
		Summa	•	150	
			e Models	150	
			icative Models and "Exact" Elasticity	153	
	5.13	Summa	ary of Chapter 5	158	
	5.14	Append	lix: FGL Treatment and Extensions	159	
	5.15	Related	DEA-Solver Models for Chapter 5	160	
	5.16	Probler	n Supplement for Chapter 5	161	
6					
0.		Introdu	· · · · · · · · · · · · · · · · · · ·	165	
				165	
	6.2		nce Region Method Formula for the Assurance Region Method	166	
		6.2.2		166 169	
		6.2.3		109	
		6.2.4		172	
	6.3		er Assurance Region Model	173	
	6.4		Ratio Method	174	
			Polyhedral Convex Cone as an Admissible Region of Weights	174	
			Formula for Cone-Ratio Method	175	
			A Cone-Ratio Example	176	
		6.4.4	How to Choose Admissible Directions	177	
	6.5	An Ap	plication of the Cone-Ratio Model	177	
	6.6	Negative Slack Values and Their Uses			
	6.7	-	Evaluation Study for Relocating Japanese Government Agencies out		
		of Toky		184	
			Background	184	
			The Main Criteria and their Hierarchy Structure	185	
		6.7.3	· · · · · · · · · · · · · · · · · · ·	186	
			Weights of the 18 Criteria by the 18 Council Members (Evaluators)	187	
		6.7.5	Decision Analyses using Averages and Medians	189	
		6.7.6	Decision Analyses using the Assurance Region Model	189	
		6.7.7	Evaluation of "Positive" of Each Site	190	
		6.7.8 6.7.9	Evaluation of "Negative" of Each Site Uses of "Positive" and "Negative" Scores	190 191	
			Decision by the Council	191	
			Concluding Remarks	192	
	6.8		ary of Chapter 6	192	
	6.9		and Selected Bibliography	193	
	0.9	Notes	and Selected Dibliography	194	

	6 10	Related DEA-Solver Models for Chapter 6 1	.94
			.95
7.	NON	-DISCRETIONARY AND CATEGORICAL VARIABLES 2	203
1.	7.1		203
	7.2		205
	7.3	,	207
	1.5		207
		7.3.2 An Example of a Non-Controllable Variable	208
		1.3.5 Non-discretionary Vandble (NBBB) model	210
		1:5:4 Doullaca Vallable (Dirb) model	212
			212
	7.4	DEN Mill Categorical Diffeo	215 215
		This will Example of a moral official official	215
			217
	7.5		219
	1.5		219
			220
		7.5.3 Illustration of a One Input and Two Output Scenario	220
	7.6	Rank-Sum Statistics and DEA	221
		7.6.1 Rank-Sum-Test (Wilcoxon-Mann-Whitney)	222
		7.6.2 Use of the Test for Comparing the DEA Scores of Two Groups	223
		7.6.3 Use of the Test for Comparing the Efficient Frontiers of Two Groups7.6.4 Bilateral Comparisons Using DEA	224 224
		7.6.5 An Example of Bilateral Comparisons in DEA	224 225
		7.6.6 Evaluating Efficiencies of Different Organization Forms	226
	7.7	Summary of Chapter 7	228
	7.8	Notes and Selected Bibliography	228
	7.9	Related DEA-Solver Models for Chapter 7	228
	7.10	Problem Supplement for Chapter 7	230
8	ALI	OCATION MODELS	
Ū	8.1	Introduction	245
	8.2	Overall Efficiency with Common Prices and Costs	245
	0.2	8.2.1 Cost Efficiency	246
		8.2.2 Revenue Efficiency	246 248
		8.2.3 Profit Efficiency	248
		8.2.4 An Example	249
	8.3	and and and and an and an and and and an	250
		8.3.1 A New Scheme for Evaluating Cost Efficiency	250
		8.3.2 Differences Between the Two Models8.3.3 An Empirical Example	252
		8.3.3 An Empirical Example 8.3.4 Extensions	253
	8.4		255
		8.4.1 Loss due to Technical Inefficiency	257
		8.4.2 Loss due to Input Price Inefficiency	257
			258

			Loss due to Allocative Inefficiency	259
			Decomposition of the Actual Cost An Example of Decomposition of Actual Cost	259 260
	8.5		y of Chapter 8	
				260
	8.6	Notes and Selected Bibliography Related DEA Solver Medals for Chapter 8		261
	8.7		DEA-Solver Models for Chapter 8	262
	8.8	Problem	Supplement for Chapter 8	264
9.		A VARIA		271 271
	9.1	Introduction		
	9.2		ty Analysis	271
			Degrees of Freedom Algorithmic Approaches	271 272
			Metric Approaches	272
			Multiplier Model Approaches	275
	9.3		al Approaches	279
	9.4	Chance-	Constrained Programming and Satisficing in DEA	286
		9.4.1 I	Introduction	286
			Satisficing in DEA	286
			Deterministic Equivalents	287
			Stochastic Efficiency	290
	9.5		Analysis	292
			An Example Application	292 293
			Analysis	293 295
	9.6		ry of Chapter 9	295
	9.7		DEA-Solver Models for Chapter 9	297
10	CHD		CIENCY MODELS	
10				301
		Introduc		301
			Super-efficiency Models	302
	10.3		lial Super-efficiency Models	305
			Definition of Non-radial Super-efficiency Measure Solving Super-efficiency	306 307
			Input/Output-Oriented Super-efficiency	308
			An Example of Non-radial Super-efficiency	308
	10.4		ons to Variable Returns-to-Scale	309
			Radial Super-efficiency Case	309
			Non-radial Super-efficiency Case	310
	10.5	Summa	ry of Chapter 10	311
	10.6	Notes a	nd Selected Bibliography	311
	10.7	7 Related DEA-Solver Models for Chapter 10		311
	10.8	Problem	n Supplement for Chapter 10	312

Appendices

A-Linear Programming and Duality

		315	
	Linear Programming and Optimal Solutions	315	
=	Basis and Basic Solutions		
	Optimal Basic Solutions	316	
• • • •	Dual Problem	317	
A.5	Symmetric Dual Problems	318	
A.6	Complementarity Theorem	319	
A.7	Farkas' Lemma and Theorem of the Alternative	320	
A.8	Strong Theorem of Complementarity	321	
A.9	Linear Programming and Duality in General Form	323	
BIntroduction to DEA-Solver			
B.1	Platform	326	
B.2	Installation of DEA-Solver	326	
B.3	Notation of DEA Models	326	
B.4	Included DEA Models	327	
B.5	Preparation of the Data File	327	
	B.5.1 The CCR, BCC, IRS, DRS, GRS, SBM, Super-Efficiency and FDH		
	Models	328	
	B.5.2 The AR Model	329	
	B.5.3 The ARG Model	330	
	B.5.4 The NCN and NDSC Models B.5.5 The BND Model	331	
	B.5.6 The CAT, SYS and Bilateral Models	332 332	
	B.5.7 The Cost and New-Cost Models	333	
	B.5.8 The Revenue and New-Revenue Models	334	
	B.5.9 The Profit, New-Profit and Ratio Models	334	
	B.5.10 The Window Models	334	
	B.5.11 Weighted SBM Model	335	
B.6	Starting DEA-Solver	336	
B.7	Results	336	
B.8	Data Limitations	340	
	B.8.1 Problem Size	340	
	B.8.2 Inappropriate Data for Each Model	340	
B.9		342	
B.1	B.10 Summary of Headings to Inputs/Outputs		
C–Bibl	iography	342 343	
	54		

345