Contents

Part One General Topology

CHAPTER I

Sets

1.	Some basic terminology	•	•			•	•		•	•			•	3
2.	Denumerable sets .	•					•			•		•		6
3.	Zorn's lemma	•		•	•		•	•	•	•	•		•	10

CHAPTER II

Topological Spaces

1.	Open and closed sets						•		•			17
2.	Connected sets											25
3.	Compact spaces											29
4.	Separation by continu	ious	fun	ctio	ns			•			•	38

CHAPTER III

Continuous Functions on Compact Sets

1.	The Stone-Weierstrass theorem						47
2.	Ideals of continuous functions .						51

Part Two Banach Spaces and the Calculus

CHAPTER IV

Banach Spaces

1.	Definitions and the Hahn-Bar	nach	$\mathbf{th}\mathbf{e}$	eore	m	•	•	•				61
2.	Banach algebras				•		•	•				66
3.	The linear extension theorem		•		•		•		•	•	•	72

CONTENTS

4.	Cor	npletion of a normed	l ve	ecto	r sp	pace									73
5.	\mathbf{Spa}	ces with operators							•	•			•		77
	App	pendix: Convex sets.							•	•				•	80
	1.	The Krein-Milman	$_{\mathrm{the}}$	orei	n				•						80
	2.	Mazur's theorem.		•			•	•	•	•			•	•	85

CHAPTER V

Differential Calculus

1.	Integration in one variable						•.			93
2.	The derivative as a linear map		•						•	95
3.	Properties of the derivative				•				•	97
4.	Mean value theorem									102
5.	The second derivative								•	104
6.	Higher derivatives and Taylor's formula				•				•	107
7.	Partial derivatives	•		•						112
8.	Differentiating under the integral sign					•		•	•	116
9.	Differentiation of sequences				•	•	•		•	117

CHAPTER VI

Inverse Mappings and Differential Equations

1.	The inverse mapping theorem	•				•	121
2.	The implicit mapping theorem						125
3.	Existence theorem for differential equations						126
4.	Local dependence on initial conditions .			٠			131
5.	Global smoothness of the flow						136

Part Three Functional Analysis

CHAPTER VII

Hilbert Space

1.	Hermitian forms	•				149
2.	Functionals and operators		•			157
3.	The spectral theorem for compact hermitian operators	۰.				164
4.	The spectral theorem for hermitian operators			•	•	166
5.	Orthogonal projections					171
6.	Schur's lemma					173
7.	The Morse-Palais lemma					174

viii

CONTENTS

CHAPTER VIII

The Open Mapping Theorem, Factor Spaces, and Duality

1.	The open mapping theorem			•		•	183
	Orthogonality						
3.	Applications of the open mapping theorem			•	•		190

CHAPTER IX

Compact and Fredholm Operators

1.	Compact operators	•		•	•	•	•	•	•	195
2 .	Fredholm operators and the index									197
3.	Spectral theorem for compact operators		• /							205
4.	Ascoli's theorem		•							211
5.	Application to integral equations		•							212

Part Four Integration in Measured Spaces

CHAPTER X

The General Integral

2. The integral of step maps2353. The \mathcal{L}^1 -completion2374. Properties of the integral: First part2435. Properties of the integral: Second part2466. Approximations2557. Extension of positive measures from algebras to σ -algebras2608. Product measures and integration on a product space265	1	Measured spaces, measurable maps, and positive measures		· · ·		222
3. The \mathcal{L}^1 -completion 237 4. Properties of the integral: First part 243 5. Properties of the integral: Second part 246 6. Approximations 255 7. Extension of positive measures from algebras to σ -algebras 260 8. Product measures and integration on a product space 265						444
3. The \mathcal{L}^1 -completion 237 4. Properties of the integral: First part 243 5. Properties of the integral: Second part 246 6. Approximations 255 7. Extension of positive measures from algebras to σ -algebras 260 8. Product measures and integration on a product space 265	2 .	The integral of step maps	•			235
5. Properties of the integral: Second part2466. Approximations2557. Extension of positive measures from algebras to σ -algebras2608. Product measures and integration on a product space265						237
6. Approximations	4.	Properties of the integral: First part				243
7. Extension of positive measures from algebras to σ -algebras2608. Product measures and integration on a product space25	5.	Properties of the integral: Second part				246
8. Product measures and integration on a product space	6.	Approximations				255
	7.	Extension of positive measures from algebras to σ -algebras				260
9. The Lebesgue integral in \mathbf{R}^p	8.	Product measures and integration on a product space			•	265
	9.	The Lebesgue integral in \mathbf{R}^p				273

CHAPTER XI

Duality and Representation Theorems

1.	The Hilbert space $L^2(\mu)$						285
	Duality between $L^1(\mu)$ and $L^{\infty}(\mu)$						
3.	Vectorial measures						299
4.	The L^p spaces, $1 .$						311

CONTENTS

Part Five Integration on Locally Compact and Euclidean Spaces

CHAPTER XII

Integration and Measures on Locally Compact Spaces

1.	Positive and bounded functionals	on	$C_c(X$	()						323
2.	Positive functionals as integrals		•							326
3.	Regular positive measures									336
4.	Bounded functionals as integrals					•				337
5.	Localization of a measure and of t	he	integ	gral	l.					339
6.	Product measures on locally comp	act	spa	ces			•	•		342

CHAPTER XIII

Integration on Locally Compact Groups

1.	Topological groups							•		•	•	347
2.	The Haar integral, uniqueness						•					351
3.	Existence of the Haar integral	•			•	•						356
4.	Measures on factor groups and	ho	mog	gene	ous	spa	ices					359

CHAPTER XIV

The Fourier Integral and Convolutions

1.	The Schwartz space				•	•				•	365
2.	The Fourier inversion formula .										370
3.	The Poisson summation formula						•				372
4.	Convolution and regularization in	\mathfrak{L}^p		•			•	•	•		373

CHAPTER XV

Distributions

1.	Definition and examples						•					379
2.	Support and localization				•	•		•				382
3.	Derivation of distributions		•						•			386
4.	Distributions with discrete	sup	por	t		•	•					387

Part Six Global Analysis

CHAPTER XVI

Local Integration of Differential Forms

1.	Sets of measure 0						•		395
2.	Change of variables formula			•	•	•		•	396
3.	Differential forms								405
4.	Inverse image of a form .			•	•				410
	Appendix								414

CHAPTER XVII

Manifolds

1.	Atlases, charts, morphisms	5.						•			421
2.	Submanifolds										425
3.	Tangent spaces										431
4.	Partitions of unity										434
5.	Manifolds with boundary										437
6.	Vector fields and global di	ffer	enti	al e	qua	tior	\mathbf{s}				442

CHAPTER XVIII

Integration and Measures on Manifolds

1.	Differential forms on manifolds					445
	Orientation					
3.	The measure associated with a differential form	•				451
4.	Stokes' theorem for a rectangular simplex .					453
	Stokes' theorem on a manifold					
6.	Stokes' theorem with singularities			•		459
Bib	liography				•	469
Ind	ex				•	473