Contents

Volumes I and II

Author's preface to the English edition	Х
Preface to the second edition	xi
Notation	xii
References to volumes I and II	xiii
Index to volumes I and II	xxiii

Volume I

1. Hilbert space	
1. Linear systems	1
2. Linear manifolds	2
3. The scalar product (inner product)	4
4. Some general concepts	7
5. Hilbert space	8
6. Distance of a point from a convex set in H	12
7. Projection of a vector on to a sub-space	14
8. Orthogonalization of a sequence of vectors	19
9. Bessel's inequality and Parseval's equation	21
10. Complete orthonormal systems of vectors in H	27
11. The space L^2	32
12. Complete orthonormal sequences in L^2	36
13. Bi-orthogonal systems of vectors in H	40
14. The space L^2_{σ}	43
15. The space of almost-periodic functions	49
16. The concept of a basis of a space	50
2. Linear functionals and bounded linear operators	56
17. Point-functions	56
18. Linear functionals	58
19. A theorem of F. Riesz	60
20. A criterion for a given system of vectors to be closed in H	63
21. A lemma on convex functionals	64

v

	22. Bounded linear operators	67
	23. Bilinear functionals	69
	24. The general form of a bilinear functional	71
	25. Adjoint operators	73
	26. Weak convergence in H	77
	27. Compactness	79
	28. A criterion for an operator to be bounded	82
	29. Linear operators in a separable space	82
	30. Completely continuous operators (compact operators)	88
	31. Absolute norms	91
	32. Hilbert-Schmidt operators	95
	33. Convergent sequences of bounded linear operators	97
	34. Sets of bounded linear operators in a separable Hilbert	
	space	99
3	Projection operators and unitary operators	103
5.	rojotnon operators and amany operators	
	35. Definition of a projection operator	103
	36. Properties of projection operators	104
	37. Operations on projection operators	105
	38. Sequences of projection operators	108
	39. The aperture of two linear manifolds	109
	40. Unitary operators	112
	41. Isometric operators	114
	42. The Fourier–Plancherel operator	110
4.	General concepts and theorems in the theory of linear operators	120
	43. Closed operators	120
	44. General definition of an adjoint operator	120
	45. Eigenvectors, invariant sub-spaces, and the reducibility of	121
	linear operators	124
	46. Symmetric operators	128
	47. More about isometric and unitary operators	131
	48. The concept of the spectrum	132
	49. The resolvent	136
	50. Conjugation operators	139
	51. The graph method	141
	52. A generalization of the concept of a projection operator	145
	53. Matrix representation of unbounded symmetric operators	147
	54. The operator of multiplication by the independent variable	152
	55. The operator of differentiation	156

5.	Spectral analysis of completely continuous operators	164
	56. Two lemmas	164
	57. On the eigenvalues of completely continuous operators	
	in R	166
	58. Fredholm theorems for completely continuous operators	170
	59. F. Riesz's method in the theory of linear functional equa-	
	tions	173
	60. Completely continuous self-adjoint operators in R	178
	61. Completely continuous, normal operators	183
	62. Application to the theory of almost-periodic functions	186
	63. Expansion of an arbitrary completely continuous operator	
	as a series of one-dimensional operators	193
	64. Nuclear operators	196
	65. Schauder's fixed-point theorem	202
	66. A theorem on the existence of an invariant sub-space for	
	any completely continuous operator, and a generalization	208
6.	Spectral analysis of unitary and self-adjoint operators	212
	67. The resolution of the identity	212
	68. The trigonometrical problem of moments	215
	69. Analytic functions with values lying in a half-plane	218
	70. The Bochner-Khinchin theorem	224
	71. The spectral resolution of a unitary operator	228
	72. Stieltjes-integral operators	233
	73. Integral representation of a group of unitary operators	239
	74. Integral representation of the resolvent of a self-adjoint	
	operator	241
	75. Spectral resolution of self-adjoint operators	247
	76. On sets of operator-measure zero in a separable space	253
	77. Functions of unitary operators	256
	78. Direct derivation of the spectral resolution of a unitary	
	operator	261
	79. The Cayley transform	264
	80. Commutative operators	269
	81. Spectral resolution of bounded normal operators	270
	82. The spectrum of a self-adjoint operator and of a unitary	
	operator	272
	83. The simple spectrum	277
	84. Spectral types	283
	85. The multiple spectrum	286
	86. Canonical form of a self-adjoint operator with a spectrum	
	of finite multiplicity	288

vii

	 87. Unitary invariants of self-adjoint operators 88. General definition of functions of self-adjoint operator 89. Examples 90. Rings of bounded, self-adjoint operators 91. A characteristic property of functions of a self-ad operator 92. A theorem on the generating operator 	292 294 296 303 joint 308 312
V	lume II	
7.	The spectrum and perturbations of self-adjoint operators	313
	93. The continuous spectrum of a self-adjoint operator94. H. Weyl's theorem and von Neumann's theorem on contract of the self-adjoint operator	313 com-
	95. The absolutely continuous part and the singular part of	317 f the 225
	96 Invariance of the absolutely continuous part of the s	323 pec-
	trum relative to finite-dimensional perturbations	327
	97. Definition and formal properties of wave operators 98. Existence of wave operators in the case of fin	332 nite-
	dimensional perturbations	337
	99. Transition to the general case of nuclear perturbation	s 341
8.	Theory of extensions of symmetric operators	347
	100. Deficiency indices	347
	101. More about the Cayley transform	351
	102. The von Neumann formulae	354
	103. Simple symmetric operators	357
	104. The structure of maximal operators	360
	105. The spectra of self-adjoint extensions of a given symm operator	etric 364
	106. M. G. Krein's formula for the resolvents of self-adj	joint
	extensions of a given symmetric operator	367
	107. Self-adjoint extensions of semi-bounded operators	372
	108. Norm-preserving, self-adjoint extensions of a bour	ided
	symmetric operator whose domain is not dense in H	376
	109. Self-adjoint extensions of a semi-bounded symmotor operator which preserve its lower bound	etric 382
9.	Generalized extensions and generalized spectral function	s of 388
	symmetric operators	
	110. Generalized resolutions of the identity. M. A. Naima theorem	rk's 388

111. Self-adjoint extensions with emergence from the space.	
Spectral functions of symmetric operators	393
generalized resolvents	400
113. M. G. Krein's formula for generalized resolvents	406
114. Quasi-self-adjoint extensions and the characteristic func-	
tion of a symmetric operator	413
115. On triangular resolutions of certain non-self-adjoint	420
operators	428
Appendix 1. Integral operators	435
116. Definitions and auxiliary results	435
117. Example	440
118. Spectral functions of an integral operator with a Carleman	
kernel	444
19. Spectral representation of a Carleman Kernel	455
120. Generalization of the Hilbert-Schmidt formula	457
121. Unaracteristic properties of Carteman integral operators	450
122. Von Neumann's theorem	402
Appendix 2. Differential operators	468
123. Self-adjoint differential expressions	468
124. Regular differential operators	473
125. Self-adjoint extensions of a regular differential operator	475
126. Singular differential operators	481
127. Self-adjoint extensions of a singular differential operator	486
128. Resolvents of self-adjoint extensions	489
129. Inversion formulae associated with second-order differen-	500
120 Constitution to differential energy of any order	515
130. Ocheralization to underential operators of any older	515
operator by the decomposition method	519
132. Examples	530
	•