Contents

Prej	face	p	age ix
PAF	RT I	INTRODUCTION AND BACKGROUND	
1	Int	roduction	3
		Motivation, Background, and Overview Overview of Automotive Control Systems	3 7
2	Au	tomotive Control-System Design Process	21
	2.1	Introduction Identifying the Control Requirements	21 22
3	Rev	view of Engine Modeling	33
	3.1 3.2	Engine Operations Engine Control Loops Control-Oriented Engine Modeling	33 37 42
4	Rev	view of Vehicle Dynamics	54
	4.2 4.3	Coordinates and Notation for Vehicle Dynamics Longitudinal Vehicle Motion Lateral Vehicle Motion Vertical Vehicle Motion	54 58 64 77
5	Hu	man Factors and Driver Modeling	93
		Human Factors in Vehicle Automation Driver Modeling	93 101
PAI	RT II	POWERTRAIN CONTROL SYSTEMS	
6	Air	-Fuel Ratio Control	119
		Lambda Control PI Control of a First-Order System with Delay	119 120
7	Cor	ntrol of Spark Timing	. 124
	7.1	Knock Control	124

vi Contents

8	Idle-Speed Control	126
9	Transmission Control	131
	9.1 Electronic Transmission Control	131
	9.2 Clutch Control for AWD	133
10	Control of Hybrid Vehicles	148
	10.1 Series, Parallel, and Split Hybrid Configurations	148
	10.2 Hybrid Vehicle-Control Hierarchy	152
	10.3 Control Concepts for Series Hybrids	157
	10.4 Control Concepts for Parallel Hybrids	166
	10.5 Control Concept for Split Hybrids	177
	10.6 Feedback-Based Supervisory Controller for PHEVs	178
11	Modeling and Control of Fuel Cells for Vehicles	187
	11.1 Introduction	187
	11.2 Modeling of Fuel-Cell Systems	189
	11.3 Control of Fuel-Cell Systems	196
	11.4 Control of Fuel-Cell Vehicles	201
	11.5 Parametric Design Considerations	205
PA	RT III VEHICLE CONTROL SYSTEMS	
12	Cruise and Headway Control	213
	12.1 Cruise-Controller Design	213
	12.2 Autonomous Cruise Control: Speed and Headway Control	224
13	Antilock Brake and Traction-Control Systems	232
	13.1 Modeling	234
	13.2 Antilock Braking Systems	236
	13.3 Traction Control	247
14	Vehicle Stability Control	257
	14.1 Introduction	258
	14.2 Linear Vehicle Model	261
	14.3 Nonlinear Vehicle Model	263
	14.4 VSC Design Principles	266
15	Four-Wheel Steering	272
	15.1 Basic Properties	272
	15.2 Goals of 4WS Algorithms	274
16	Active Suspensions	287
	16.1 Optimal Active Suspension for Single-DOF Model	288
	16.2 Optimal Active Suspension for Two-DOF Model	290
	16.3 Optimal Active Suspension with State Estimation	294

Contents

PAF	RT IV INTELLIGENT TRANSPORTATION SYSTEMS	
17	Overview of Intelligent Transportation Systems	. 309
	 17.1 Advanced Traffic Management Systems 17.2 Advanced Traveler Information Systems 17.3 Commercial Vehicle Operations 17.4 Advanced Vehicle-Control Systems 	310 312 314 314
18	Preventing Collisions	. 322
	18.1 Active Safety Technologies18.2 Collision Detection and Avoidance	322 322
19	Longitudinal Motion Control and Platoons	. 332
	19.1 Site-Specific Information19.2 Platooning19.3 String Stability	332 337 343
20	Automated Steering and Lateral Control	. 348
	20.1 Lane Sensing20.2 Automated Lane-Following Control20.3 Automated Lane-Change Control	348 352 356
APF	PENDICES	
App	pendix A: Review of Control-Theory Fundamentals	. 363
	A.1 Review of Feedback Control A.2 Mathematical Background and Design Techniques	363 370
Apj	pendix B: Two-Mass Three-Degree-of-Freedom Vehicle Lateral/Yaw/Roll Model	. 385
Inde	ex	391