CONTENTS

On	Online resources				
Acl	cknowledgements				
Abo	out the	e author		xxi	
1	How	best t	o use this book	1	
	1.1	The p	urpose of this book	2	
	1.2	Who i	is this book for?	2	
	1.3	Prerec	puisites	2	
	1.4	Book	outline	3	
	1.5	Route	planner – suggested journeys through Bayesland	4	
	1.6	Video		5	
	1.7	Proble	em sets	6	
	1.8	R and	Stan	6	
	1.9	Why	don't more people use Bayesian statistics?	6	
	1.10	What	are the tangible (non-academic) benefits of Bayesian statistics?	7	
	1.11	Sugge	sted further reading	8	
I	An i	ntrodu	ection to Bayesian inference	9	
	Part I	mission	n statement	9	
	Part I	goals		9	
2	The subjective worlds of Frequentist and Bayesian statistics				
	2.1	Chapt	er mission statement	12	
	2.2	Chapt	ter goals	12	
	2.3	Bayes'	rule – allowing us to go from the effect back to its cause	12	
	2.4	The p	urpose of statistical inference	17	
	2.5	The w	orld according to Frequentists	17	
	2.6	The w	orld according to Bayesians	18	
	2.7	Do pa	rameters actually exist and have a point value?	19	
	2.8	Freque	entist and Bayesian inference	20	
		2.8.1	The Frequentist and Bayesian murder trials	22	
		2.8.2	Radio control towers	22	
	2.9	Bayesi	an inference via Bayes' rule	23	
		2.9.1	Likelihoods	23	
		2.9.2	Priors	24	
		2.9.3	The denominator	25	
		2.9.4	Posteriors: the goal of Bayesian inference	25	

viii	0	CONTENTS

	2.10	Implicit	t versus explicit subjectivity	25
	2.11	Chapter	r summary	27
	2.12	Chapter	routcomes	28
	2.13	Append	lix	28
		2.13.1	The Frequentist and Bayesian murder trials	28
	2.14	Problem	n sets	28
3	Prob	ability -	the nuts and bolts of Bayesian inference	33
	3.1	-	r mission statement	34
	3.2	Chapter	*	34
	3.3		llity distributions: helping us to explicitly state our	
		ignoran		34
		3.3.1	What makes a probability distribution valid?	35
		3.3.2	Probabilities versus probability densities: interpreting	2/
			discrete and continuous probability distributions	36
		3.3.3	The mean of a distribution	40
		3.3.4	Generalising probability distributions to two	42
		2.2.5	dimensions	42
		3.3.5	Marginal distributions	44 48
	2.4	3.3.6	Conditional distributions	50
	3.4 3.5	Indeper	limit theorems	53
	3.6		ation of Bayes' rule	54
	3.0	3.6.1	The intuition behind the formula	55
		3.6.2	Breast cancer screening	55
	3.7		vesian inference process from the Bayesian formula	57
	3.8	-	r summary	58
	3.9	-	r outcomes	59
	3.10	Problem		59
П	IInd	arstandi	ing the Bayesian formula	63
11				
			statement	63
	Part .	II goals		63
4	Like	lihoods		65
	4.1	Chapter	r mission statement	. 66
	4.2	Chapter	r goals	66
	4.3	What is	s a likelihood?	67
	4.4	Why us	se likelihood rather than probability?	68
	4.5		re models and why do we need them?	70
	4.6		choose an appropriate likelihood	71
		4.6.1	Example: an individual's disease status	71
		4.6.2	Example: disease prevalence of a group	73
		4.6.3	Example: intelligence test scores for a group of people	76
	4.7	Exchan	ngeability versus random sampling	77

			CON	ITENTS	0	ix
	4.8	Maximum	likelihood: a short introduction			78
		4.8.1 Est	timating disease prevalence			78
		4.8.2 Est	timating the mean and variance in intelligence scores			79
		4.8.3 Ma	aximum likelihood in simple steps			80
		4.8.4 In	ference in maximum likelihood			80
	4.9	Chapter su	mmary			81
	4.10	Chapter ou	tcomes			82
	4.11	Problem se	ts			82
5	Prior	rs				87
	5.1	Chapter mi	ission statement			88
	5.2	Chapter go	als			88
	5.3	What are p	riors and what do they represent?			88
		5.3.1 W	hy do we need priors at all?			90
		5.3.2 W	hy don't we normalise the likelihood by assuming a unity	y prior?		90
	5.4	The explici	t subjectivity of priors			91
	5.5	Combining	g a prior and likelihood to form a posterior			92
		5.5.1 Th	e fish game			92
		5.5.2 Dia	sease proportions revisited			94
	5.6	Construction	ng priors			96
		5.6.1 Ur	ninformative priors			96
		5.6.2 Inf	formative priors			98
		5.6.3 Eli	citing priors			99
	5.7	A strong m	odel is less sensitive to prior choice			100
		5.7.1 Ca	veat: zero priors always affect the posterior			102
	5.8	Chapter sur	mmary			103
	5.9	Chapter ou	tcomes			103
	5.10	Appendix				104
		5.10.1 Ba	yes' rule for the fish problem			104
		5.10.2 Th	e probabilities of having a disease			104
	5.11	Problem set	ts			104
6	The d	e devil is in the denominator				
	6.1	Chapter mi	ssion statement			110
	6.2	Chapter go	als			110
	6.3		ction to the denominator			110
		6.3.1 Th	e denominator as a normalising factor			110
		6.3.2 Ex	ample: individual patient disease status			111
		6.3.3 Ex	ample: the proportion of people who vote for the			
			nservative Party in a UK general election			112
		6.3.4 Th	e denominator as a probability distribution			114
	6.4		lty with the denominator			115
	6.5	How to disp	pense with the difficulty: Bayesian computation			116
	6.6	Chapter sur	•			117
	6.7	Chapter ou	tcomes			118

118

6.8

Problem sets

x O CONTENTS

7	The	posteri	or - the goal of Bayesian inference	121
	7.1	Chapte	er mission statement	122
	7.2	Chapte	er goals	122
	7.3		sing parameter uncertainty in posteriors	122
	7.4		an statistics: updating our pre-data uncertainty	124
		7.4.1	Example: Bayesian coastguard	124
	7.5	The in	tuition behind Bayes' rule for inference	125
	7.6		parameter estimates	128
	7.7	-	als of uncertainty	129
		7.7.1	Failings of the Frequentist confidence interval	129
		7.7.2	Credible intervals	130
		7.7.3	Reconciling the difference between confidence and credible	
			intervals	132
	7.8	From r	posterior to predictions by sampling	135
	7.9	-	er summary	137
	7.10	_	er outcomes	137
	7.11	Proble		138
	, , , , ,	110010	000	
Ш	Anal	ytic Ba	yesian methods	141
	Part I	II missic	on statement	141
	Part I	II goals		141
8	An i	ntrodu	ction to distributions for the mathematically uninclined	143
	8.1	Chapte	er mission statement	144
	8.2		er goals	144
	8.3	-	terrelation among distributions	144
	8.4		outions for likelihoods	146
		8.4.1	Bernoulli	146
		8.4.2	Binomial	148
		8.4.3	Poisson	150
		8.4.4	Negative binomial	152
		8.4.5	Beta-binomial	155
		8.4.6	Normal	157
		8.4.7	Student-t	159
		8.4.8	Exponential	162
		8.4.9	Gamma	163
		8.4.10		166
		8.4.11		169
	8.5		distributions	171
	0.0	8.5.1		172
		8.5.2	Distributions for probabilities and proportions	177
		8.5.3	Distributions for means and regression coefficients	181
		8.5.4	Distributions for non-negative parameters	185
	8.6		Distributions for covariance and correlation matrices sing a likelihood made easy	193
	0.0	CITOO	6 " INCITIOUU IIIAUE EASV	1)

			CONTENTS	0	хi
	8.7	Table o	f common likelihoods, their uses and possible priors		194
	8.8		r summary		194
	8.9	-	routcomes		194
	8.10	Problen	n sets		198
9	Conju	igate p	riors		201
	9.1	Chapte	r mission statement		202
	9.2	Chapte	· ·		202
	9.3		re conjugate priors and why are they useful?		202
	9.4		a–Poisson example: counting cars		205
	9.5		example: giraffe height		207
	9.6		f conjugate priors		208
	9.7		sons and limits of a conjugate analysis		208
	9.8	_	r summary		209
	9.9	-	routcomes		210
	9.10	Problen	n sets		210
10	Evalı	ation (of model fit and hypothesis testing		215
	10.1	_	r mission statement		216
	10.2	Chapte	-		216
	10.3		or predictive checks		216
		10.3.1	Recap – posterior predictive distributions		216
		10.3.2	Graphical PPCs and Bayesian p values		217
	10.4	•	o we call it a p value?		224
	10.5		es measuring predictive accuracy: AIC, DIC, WAIC and LOO-CV		225
		10.5.1	Out-of-sample prediction and overfitting		225
		10.5.2	How to measure a model's predictive capability?		226
		10.5.3	The ideal measure of a model's predictive accuracy		227
		10.5.4	Estimating out-of-sample predictive accuracy from in-sample data		230
		10.5.5	AIC DIC		231
		10.5.6	DIC		232
		10.5.7 10.5.8	WAIC LOO-CV		232 233
		10.5.9	A practical summary of measures of predictive accuracy in		233
		10.3.9	simple terms		234
	10.6	Margin	al likelihoods and Bayes factors		235
	10.7	-	ng one model or a number of them?		237
	10.8		rity analysis		237
	10.9		r summary		239
		_	r outcomes		239
		Problen			240
11	Maki	ng Bay	esian analysis objective?		245
	11.1	Chapte	r mission statement		246
	11.2	Chapte	r goals		246

χίί	0	CONTENTS

	11.3	The illusion of the uninformative uniform prior	246		
	11.4	Jeffreys priors	247		
	14.1	11.4.1 Another definition of <i>uninformative</i>	247		
		11.4.2 Being critical of Jeffreys priors	250		
	11.5	Reference priors	251		
	11.6	Empirical Bayes	253		
	11.7	A move towards weakly informative priors	255		
	11.8	Chapter summary	255		
	11.9	Chapter outcomes	256		
		Problem sets	256		
IV	_	ectical guide to doing real-life Bayesian analysis: Outational Bayes	259		
			259		
		/ mission statement	259		
	Part IV	Part IV goals			
12	Leavi	ng conjugates behind: Markov chain Monte Carlo	263		
	12.1	Chapter mission statement	264		
	12.2	Chapter goals	264		
	12.3	The difficulty with real-life Bayesian inference	265		
	12.4	Discrete approximation to continuous posteriors	266		
	12.5	The posterior through quadrature	268		
	12.6	Integrating using independent samples: an introduction to			
		Monte Carlo	270		
		12.6.1 Mad cows revisited	272		
	12.7	Why is independent sampling easier said than done?	273		
	12.8	Ideal sampling from a posterior using only the numerator of			
		Bayes' rule	276		
		12.8.1 The un-normalised posterior: a window onto the real deal	278		
	12.9	Moving from independent to dependent sampling	278		
		12.9.1 An analogy to MCMC: mapping mountains	280		
	12.10	What is the catch with dependent samplers?	281		
	12.11	Chapter summary	283		
	12.12	Chapter outcomes	284		
	12.13	Problem sets	284		
13	Rand	om Walk Metropolis	291		
	13.1	Chapter mission statement	292		
	13.2	Chapter goals	292		
	13.3	Sustainable fishing	293		
	13.4	Prospecting for iron	295		
	13.5	Defining the Random Walk Metropolis algorithm	297		
	13.6	When does Metropolis work?	299		
		13.6.1 Mathematical underpinnings of MCMC	300		
		13.6.2 Desirable qualities of a Markov chain	301		

		13.6.3 Deta	ailed balance	302
		13.6.4 The	intuition behind the accept-reject rule of Metropolis and	
			iled balance	303
	13.7	-	convergence: the importance of choosing the right	
		proposal scal		304
			MC as finding and exploring the typical set	307
		-	ding up convergence: tuning the proposal distribution	307
		Metropolis-F	•	309
	13.9	Judging conv		310
			s bees in a house	311
			g multiple chains to monitor convergence	312
			g within- and between-chain variation to estimate	24.5
			rergence	315
			types of non-convergence	316
	40.40	13.9.5 War	•	318
	13.10		ple size revisited	319
			ning samples to increase effective sample size	320
		Chapter sum		321
		Chapter outo	omes	322
	13.13	Problem sets		322
14	Gibbs	sampling		329
	14.1	Chapter miss	ion statement	330
	14.2	Chapter goal	S	330
	14.3	Back to prosp	pecting for iron	331
	14.4	Defining the	Gibbs algorithm	333
		14.4.1 Crin	ne and punishment (unemployment)	334
	14.5	Gibbs' earth:	the intuition behind the Gibbs algorithm	335
	14.6		and problems with Gibbs and Random Walk Metropolis	336
	14.7	A change of p	parameters to speed up exploration	337
	14.8	Chapter sum	mary	338
	14.9	Chapter outo	omes	339
	14.10	Problem sets		339
15	Hami	ltonian Mo	nte Carlo	345
	15.1	Chapter miss	ion statement	346
	15.2	Chapter goal	s	346
	15.3	Hamiltonian	Monte Carlo as a sledge	346
	15.4	NLP space		348
	15.5	Solving for th	ne sledge motion over NLP space	349
		15.5.1 Dive	rgent iterations	351
	15.6	How to shove	e the sledge	352
	15.7	The acceptan	ce probability of HMC	352
	15.8	The complete	e HMC algorithm	353
	15.9	The performa	ance of HMC versus Random Walk Metropolis and Gibbs	354

CONTENTS O xiii

xiv	0	CONTENTS

	15.10	Optimal step length of HMC: introducing the 'No-U-Turn Sampler'	354
	15.11	Chapter summary	357
	15.12	Chapter outcomes	358
	15.13	Problem sets	358
16	Stan		365
	16.1	Chapter mission statement	366
	16.2	Chapter goals	366
	16.3	Why Stan, and how to get it?	367
		16.3.1 When to use black box MCMC rather than coding up the	
		algorithms yourself	367
		16.3.2 What is Stan?	368
		16.3.3 Why choose Stan?	368
	16.4	Getting set up with Stan using RStan	369
	16.5	Our first words in Stan	370
		16.5.1 The main blocks of a Stan program	370
		16.5.2 Executing a Stan program from R	375
		16.5.3 Interpreting the results of a Stan MCMC run	376
		16.5.4 The other blocks	378
		16.5.5 Efficiency and memory considerations for each block	383
		16.5.6 Loops and conditional statements	385
	16.6	Essential Stan reading	386
	16.7	What to do when things go wrong	406
		16.7.1 Coding errors	406
		16.7.2 Sampling issues	409
	16.8	How to get further help	415
	16.9	Chapter summary	416
	16.10	Chapter outcomes	416
	16.11	Problem sets	417
v	Hiera	rchical models and regression	425
	Part V	mission statement	425
	Part V	goals	425
17	Hiera	archical models	429
	17.1	Chapter mission statement	430
	17.2	Chapter goals	430
	17.3	The spectrum from fully pooled to heterogeneous models	431
		17.3.1 Fully pooled model	431
		17.3.2 Heterogeneous model	434
		17.3.3 Hierarchical model	435
		17.3.4 The additional benefits of hierarchical models	437
	17.4	Non-centred parameterisations in hierarchical models	438
	17.5	Case study: forecasting the result of the UK's referendum on	
		EU membership	440

			CONTENTS	0	XV
	17.6	The importance of fake data simulation for complex models			442
		Chapter summary			444
		Chapter outcomes			445
		Problem sets			445
18	Linea	r regression models			453
	18.1	Chapter mission statement			454
	18.2	Chapter goals			454
	18.3	Example: high school test scores in England			454
	18.4	Pooled model			456
	18.5	Interactions			457
	18.6	Heterogeneous coefficient model			459
	18.7	Hierarchical model			460
	18.8	Incorporating LEA-level data			463
	18.9	Chapter summary			465
	18.10	Chapter outcomes			466
	18.11	Problem sets			466
19	Gene	ralised linear models and other animals			469
	19.1	Chapter mission statement			470
	19.2	Chapter goals			470
	19.3	Example: electoral participation in European countries			471
		19.3.1 Multilevel interactions			476
		19.3.2 Comparing the predictive fit of each of the models			479
	19.4	Discrete parameter models in Stan			480
		19.4.1 Example: how many times was the coin flipped?			481
	19.5	Chapter summary			484
	19.6	Chapter outcomes			485
	19.7	Problem sets			485
Rih	liograpl	nv			489
Ind		-,			493