REAL AND COMPLEX ANALYSIS

Third Edition

Walter Rudin

Professor of Mathematics University of Wisconsin, Madison

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Hamburg London Madrid Mexico Milan Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

CONTENTS

	Preface	xiii
	Prologue: The Exponential Function	1
Chapter 1	Abstract Integration	5
	Set-theoretic notations and terminology	6
	The concept of measurability	8
	Simple functions	15
	Elementary properties of measures	16
	Arithmetic in $[0, \infty]$	18
	Integration of positive functions	19
	Integration of complex functions	24
	The role played by sets of measure zero	27
	Exercises	31
Chapter 2	Positive Borel Measures	33
	Vector spaces	33
	Topological preliminaries	35
	The Riesz representation theorem	40
	Regularity properties of Borel measures	47
	Lebesgue measure	49
	Continuity properties of measurable functions	55
	Exercises	57
Chapter 3	L ^p -Spaces	61
chapter o	•	
	Convex functions and inequalities	61
	The L^p -spaces	65
	Approximation by continuous functions Exercises	69 71

vii

viii co	NTENTS
---------	--------

viii contents		
Chapter 4	Elementary Hilbert Space Theory	76
	Inner products and linear functionals	76
	Orthonormal sets	82
	Trigonometric series	88
	Exercises	92
Chapter 5	Examples of Banach Space Techniques	95
	Banach spaces	95
	Consequences of Baire's theorem	97
	Fourier series of continuous functions	100
	Fourier coefficients of L^1 -functions	103
	The Hahn-Banach theorem	104
	An abstract approach to the Poisson integral	108
	Exercises	112
Chapter 6	Complex Measures	116
	Total variation	116
	Absolute continuity	120
	Consequences of the Radon-Nikodym theorem	124
	Bounded linear functionals on L^p	126
	The Riesz representation theorem	129
	Exercises	132
Chapter 7	Differentiation	135
	Derivatives of measures	135
	The fundamental theorem of Calculus	144
	Differentiable transformations	150
	Exercises	156
Chapter 8	Integration on Product Spaces	160
-	Measurability on cartesian products	160
	Product measures	163
	The Fubini theorem	164
	Completion of product measures	167
	Convolutions	170
	Distribution functions	172
	Exercises	174
Chapter 9	Fourier Transforms	178
6 - .	Formal properties	178
	The inversion theorem	180
	The Plancherel theorem	185
	The Banach algebra L^1	190
	Exercises	193

Chapter 10	Elementary Properties of Holomorphic Functions	196
	Complex differentiation	196
	Integration over paths	200
	The local Cauchy theorem	204
	The power series representation	208
	The open mapping theorem	214
	The global Cauchy theorem	217
	The calculus of residues	224
	Exercises	227
Chapter 11	Harmonic Functions	231
	The Cauchy-Riemann equations	231
	The Poisson integral	233
	The mean value property	237
	Boundary behavior of Poisson integrals	239
	Representation theorems	245
	Exercises	249
Chapter 12	The Maximum Modulus Principle	253
	Introduction	253
	The Schwarz lemma	254
	The Phragmen-Lindelöf method	256
	An interpolation theorem	260
	A converse of the maximum modulus theorem	262
	Exercises	264
Chapter 13	Approximation by Rational Functions	266
	Preparation	266
	Runge's theorem	270
	The Mittag-Leffler theorem	273
	Simply connected regions	274
	Exercises	276
Chapter 14	Conformal Mapping	278
	Preservation of angles	278
	Linear fractional transformations	279
	Normal families	281
	The Riemann mapping theorem	282
	The class \mathscr{S}	285
	Continuity at the boundary	289
	Conformal mapping of an annulus	291
	Exercises	293

X CONT	TENTS
--------	-------

Chapter 15	Zeros of Holomorphic Functions	298
	Infinite products	298
	The Weierstrass factorization theorem	301
	An interpolation problem	304
	Jensen's formula	307
	Blaschke products	310
	The Müntz-Szasz theorem	312
	Exercises	315
Chapter 16	Analytic Continuation	319
	Regular points and singular points	319
	Continuation along curves	323
	The monodromy theorem	326
	Construction of a modular function	328
	The Picard theorem	331
	Exercises	332
Chapter 17	H ^p -Spaces	335
_	Subharmonic functions	335
	The spaces H^p and N	337
	The theorem of F. and M. Riesz	341
	Factorization theorems	342
	The shift operator	346
	Conjugate functions	350
	Exercises	352
Chapter 18	Elementary Theory of Banach Algebras	356
	Introduction	356
	The invertible elements	357
	Ideals and homomorphisms	362
	Applications	365
	Exercises	369
Chapter 19	Holomorphic Fourier Transforms	371
Chapter 17	-	
	Introduction	371
	Two theorems of Paley and Wiener	372
	Quasi-analytic classes	377
	The Denjoy-Carleman theorem	380
	Exercises	383
Chapter 20	Uniform Approximation by Polynomials	386
	Introduction	386
	Some lemmas	387
	Mergelyan's theorem	390
	Exercises	394

Appendix: Hausdorff's Maximality Theorem	395
Notes and Comments	397
Bibliography	405
List of Special Symbols	407
Index	409