Contents

CHAPTER 1 Enzymes as Bioconversion Catalysts

1.	Enzymes and Bioconversion	1
2.	Primary and Secondary Metabolism	2
3.	Oxidative Processes for Which Oxygen is the Electron Acceptor	
	3.1. Monooxygenases	r 5 5
	3.2. Dioxygenases	15
	3.3. Desaturases	17
	3.4. Peroxidases	19
	3.5. Other Oxygenases	24
4.	Oxidative Enzymes for Which the Substrate	
	Acts as Electron Acceptor	28
	4.1. Alkene Reductions	29
	4.2. Dehydroxylations	31
	4.3. Reductive Removal of Functional Groups	
	Other than Hydroxyl	33
Re	ferences	35

CHAPTER 2

Techniques of Bioconversion

1.	The Culture Collection	41
2.	Growth of a Culture for Bioconversion	44
3.	Bioconversion Procedures	45
	3.1. Addition of the Substrate	45
	3.2. Using a Growing Culture	46
	3.3. Using a Resting Culture	48
	3.4. Other Bioconversion Procedures	49

vii

3.5.	Product Isolation	

References

51 52

CHAPTER 3

Hydroxylation at Saturated Carbon

1.	Hydr	oxylase Enzymes	55
2.	The S	Specificity of Hydroxylation	63
3.	The S	Synthesis of Alcohols by Bioconversion	86
	3.1.	Hydroxylation of Steroids	86
	3.2.	Hydroxylation of Terpenes	95
	3.3.	Benzylic Hydroxylation	102
	3.4.	Miscellaneous Substrates	108
4.	Chira	I Synthons from Enzymic Hydroxylations	114
5.	Othe	Reactions Involving Hydroxylation at Saturated Carbon	119
	5.1.	Heteroatom Dealkylation	119
	5.2.	Miscellaneous Processes	126
Ref	erenc	es .	138

CHAPTER 4

Oxidation at Unsaturated Carbon

1.	Ерох	tidation of Olefins	153
	1.1.	Preparation of Epoxides	153
	1. 2 .	Preparation of Epoxide Derived Compounds	167
2.	Aron	natic Hydroxylation	182
	2.1.	Arene Hydroxylase Enzymes	182
	2.2.	Arene Oxides and the NIH Shift	186
	2.3.	Preparation of Phenols by Bioconversion	194
3.	Diox	ygenase-Catalyzed Reactions	1 99
	3.1.	Dioxygenase Enzymes	1 99
	3.2.	Preparation of cis Dihydrodiols	203
	3.3.	Chiral Synthons from Dioxygenase Catalyzed Bioconversions	207
4.	Halo	peroxidase-Catalyzed Reactions	213
Re	ferenc	es	217

CHAPTER 5 The Baeyer-Villiger Oxidation

1.	Carbonyl Oxygenases	233
2.	Baeyer-Villiger Bioconversions of Steroids	241

Contents

3.	Other Microbial Baeyer-Villiger Oxidations	245
Ref	Terences	252

CHAPTER 6 Oxidation of Heteroatoms

1.	Biotransformation of Organic Sulfides	255
2.	Bioconversion of Other Organosulfur Compounds	266
	2.1. Thioacetals, Thioketals, and Related Compounds	266
	2.2. Sulfoxides	273
3.	Sulfur Oxidation by Isolated Enzymes	276
	3.1. Mammalian Monooxygenases	276
	3.2. Other Monooxygenases	282
	3.3. Other Enzymes	284
4.	Oxidation at Nitrogen	29 1
	4.1. Formation of N-Oxides	29 1
	4.2. Other Oxidations Involving Nitrogen	296
5.	Oxidation at Other Heteroatoms	300
References		304

CHAPTER 7

Carbon–Carbon Dehydrogenation

1.	Carbon–Carbon Dehydrogenases	313
2.	Dehydrogenation of Steroids by Bioconversion	319
3.	Other Dehydrogenations by Bioconversion	328
References		336

CHAPTER 8

Miscellaneous Oxidative Bioconversions

1.	Oxid	lative Coupling of Phenols and the	
	Forn	nation of Quinones	34 1
2.	Degr	adation of Alkyl Chains	364
	2.1.	Degradation by β -Oxidation	364
	2.2.	Oxidative Degradation at Benzylic Carbon	371
	2.3.	Oxidative Cleavage of Olefinic Bonds	374
3.	Sequ	ential Bioconversions	375
Ref	ferenc	xes (380

CHAPTER 9 Reductive Bioconversions

1.	Dehy	vdroxylation	385
2.	Redu	ction of Olefinic Bonds	393
	2 .1.	Reduction of Isolated C===C Bonds	393
	2.2.	Reduction of α , β -Unsaturated Carbonyl Compounds	397
3.	Othe	r Reductive Bioconversions	420
	3.1.	Reduction of Heteroatom Oxides	420
	3.2.	Reductive Deoxygenation and Dehalogenation	425
Re	ferenc	es	427

CHAPTER 10

Conclusions and Prognosis

1.	Prediction of Bioconversion Products	437
2.	Directed Biosynthesis	442
3.	Genetic Manipulation in Oxidative Bioconversion	443
References		447