Inorganic Reactions and Methods

Volume 8

For Formation of Bonds to N, P, As, Sb, Bi (Part 2)

Founding Editor

J.J. Zuckerman

Editor

Arlan D. Norman

Contents of Volume 8

Preface to the Series Editorial Consultants to the Series Contributors to Volume 8		xv xxi xxv xxvii
4.6.	Formation of Bonds Between Elements of Group-VB (N, P, As, Sb, Bi) and Group-IA (Li, Na, K, Rb, Cs, Fr) or Group-IIA (Be, Mg, Ca, Sr, Ba, Ra)	1
4.6.1. 4.6.2. 4.6.3. 4.6.4. 4.6.4.1. 4.6.4.2. 4.6.4.3. 4.6.5. 4.6.6.	Introduction From the Elements In Amines In Nitrides and Amides From Ammonia and Amines From Molecular Nitrogen From Other Nitrogen Compounds In Phosphides In Arsenides	1 1 3 3 3 7 7 8 9
4.6.7. 4.6.8.	In Antimonides In Bismuthides	9 10
4.7.	Formation of Bonds Between the Elements of Group-VB (N, P, As, Sb, Bi) and Group-IB (Cu, Ag, Au) or Group-IIB (Zn, Cd, Hg)	11
4.7.1. 4.7.2.	Introduction Formation of the Nitrogen—Group-IB or -IIB Element Bond	11 11
4.7.2.1. 4.7.2.1.1. 4.7.2.1.2. 4.7.2.1.3.	From Ammonia and Hydrazine To Form Ammines. To Form Amido Complexes. To Form Hydrazine and Hydrazine and	13 13 17
4.7.2.2.	Hydrazido Complexes. From Primary, Secondary and Tertiary Amines	17 18

4.7.2.2.1.	To Form Amine Complexes.	18
4.7.2.2.2.	To Form Amido Complexes.	19
4.7.2.3.	From Diamines, Triamines, and Polyamines	21
4.7.2.3.1.	From Diamines.	21
4.7.2.3.2.	Triamines, Tetramines, Polyamines.	25
4.7.2.4.	From Pyridines and Other Aromatic Amines	27
4.7.2.4.1.	From Pyridines.	27
4.7.2.4.2.	From Imidazole Complexes.	30
4.7.2.4.3.	From Pyrazole Complexes.	34
4.7.2.5.	From Bipyridyl, Phenanthroline and Related	
	Polyimines	36
4.7.2.5.1.	From Bipyridyl and Phenanthroline.	36
4.7.2.5.2.	From Terpyridyl and Naphthyridine.	38
4.7.2.6.	From Nitriles, Oximes and Imines	39
4.7.2.6.1.	From Nitriles.	39
4.7.2.6.2.	From Oximes.	40
4.7.2.6.3.	From Imines.	41
4.7.2.7.	From Oxides of Nitrogen	43
4.7.2.8.	From Corrins, Porphyrins and Other Related	
	Macrocyclic Nitrogen Donor Ligands	44
4.7.2.8.1.	By Substitution Reactions with Complexes	
	of the Metals.	44
4.7.2.8.2.	By Template Reactions.	46
4.7.2.9.	From Inorganic Nitrogen-Containing Anions	
	$(N_3^-, [NCO]^-, [NCS]^-, [NCSe]^-, [NO_2]^-,$	
	[CN] ⁻ , etc.)	47
4.7.2.9.1.	In Homogeneous Monodentatedly Ligated	
	Mononuclear Complexes.	47
4.7.2.9.2.	In Bridged Polynuclear Complexes.	49
4.7.2.9.3.	In Mixed-Ligand Complexes.	50
4.7.2.10.	From Organic Nitrogen Anions by Ligand	
	Substitution Reactions with Complexes of the	
	Metals	51
4.7.2.11.	From Metal Atom and Related Reactions	54
4.7.3.	Formation of the Phosphorus—Group-IB, or -IIB	
. =	Element Bond	55
4.7.3.1.	From the Elements	55
4.7.3.2.	From Trialkyl and Triarylphosphines	57
4.7.3.2.1.	By Reaction with Metal Halides.	57
4.7.3.2.2.	By Reaction with Aquo Complexes of the	
47000	Metals.	59
4.7.3.2.3.	By Reaction with Other Complexes of the	
	Metals.	60

4.7.3.3.	From Other Organophosphorus(III) Compounds by Substitution Reactions with	
	Complexes of the Metals	61
4.7.3.4.	From Bi- and Polydentate Phosphorus	
	Ligands by Reactions with Complexes of the Metals	63
4.7.3.5.	From Organophosphorus Anions and Their	03
1.7.0.0.	Metallo Derivatives with Halides of the Metals	65
4.7.3.6.	From Metal Atom and Related Reactions	66
4.7.4.	Formation of the Arsenic—, Antimony— and	
	Bismuth—Group-IB or Group-IIB Metal Bond	67
4.7.4.1.	From the Reaction of Monodentate Arsines,	
	Stibines and Bismuthines with Compounds	67
4.7.4.2.	From the Reaction of Bi- and Polydentate	
	Arsines, Stibines and Bismuthines with	
	Compounds	68
4.7.4.3.	From Metal Atom and Related Reactions	69
4.8.	Formation of Bonds Between the Elements	
	of Group-VB (N, P, As, Sb, Bi) and the	
	Transition- and Inner-Transition Metals	70
4.8.1.	Introduction	70
4.8.2.	The Formation of the Nitrogen—Transition and	
	Inner-Transition-Metal Bond	70
4.8.2.1.	From the Elements	70
4.8.2.1.1.	The Nitrides of the Transition Metals.	70
4.8.2.1.2.	The Rare Earth and Group-IIIA Nitrides.	74
4.8.2.1.3.	From Metal Atom and Related Reactions.	78
4.8.2.2.	Formation of Complexes of Ammonia and	70
40001	Amines	79
4.8.2.2.1.	To Form Adducts.	80
4.8.2.2.2.	To Form Classical Coordination	80
1000	Complexes of the Later d-Block Metals. Complexes of N-Heterocyclic Ligands	83
4.8.2.3. 4.8.2.3.1.	Pyridine.	83
4.8.2.3.1.	Bipyridyl, Terpyridyl, Phenanthroline.	83
4.8.2.3.3.	Other N-Heteroaromatic Ligands.	84
4.8.2.4.	Synthesis of Imine Complexes	85
4.8.2.5.	Synthesis of Organonitrile Complexes	86
1.0.2.0.	Syntholic of Organismino Complexes	

4.8.2.6.	Synthesis of Amido Complexes	88
4.8.2.6.1.	By Ammonolysis.	89
4.8.2.6.2.	By Transamination.	90
4.8.2.6.3.	By Transmetallation.	90
4.8.2.6.4.	By Other Routes.	91
4.8.2.7.	Synthesis of Imido Complexes	92
4.8.2.7.1.	Occurrence and Bonding.	92
4.8.2.7.2.	By Deprotonation of NH ₃ or RNH ₂ .	92
4.8.2.7.3.	By Reacting Mo—O with Silylamines.	93
4.8.2.7.4.	By Adding Organic Azides.	94
4.8.2.7.5.	By Electrophilic Attack on Coordinated	
	Nitrides.	94
4.8.2.7.6.	By Oxo-Imido Exchange Reactions.	95
4.8.2.7.7.	From Disubstituted Hydrazines.	95
4.8.2.7.8.	By Other Methods.	95
4.8.2.8.	Synthesis of Metal—Nitrido Complexes	97
4.8.2.8.1.	Bonding Modes.	97
4.8.2.8.2.	By Ammonolysis.	97
4.8.2.8.3.	From Hydrazines.	98
4.8.2.8.4.	From Azides.	98
4.8.2.8.5.	From NCl ₃ .	99
4.8.2.8.6.	From Nitrosyls.	99
4.8.2.8.7.	From C—N or Si—N Bond	
	Cleavage.	100
4.8.2.9.	Hydrazine and Substituted Hydrazine	
	Complexes	100
4.8.2.10.	Synthesis of Hydrazido (1-) Complexes	102
4.8.2.10.1.	From Diazonium Salts, from Hydrazines,	
	and by Protonation of Hydrazido(2-)	
	Ligands.	103
4.8.2.11.	Synthesis of Hydrazido(2–) Complexes	104
4.8.2.11.1.	From Diazonium Salts, from Hydrazines	
	and by Protonation of N ₂ and Diazenido	
	Complexes.	105
4.8.2.12.	Synthesis of Diazene Complexes from	
	Coordinated Hydrazines, Dinitrogen,	
	Diazonium Salts, Azobenzene, and by	
	Protonation of Diazenido Complexes	107
4.8.2.13.	Synthesis of Diazenido-Complexes, -NNH	
	and -NNR	108
4.8.2.13.1.	From Diazonium Salts.	109
4.8.2.13.2.	From Hydrazines and Triazenes.	110
4.8.2.13.3.	From Coordinated NO and N ₂ .	111
4.8.2.13.4.	From Me ₃ SiNNPh.	113

4.8.2.14.	Synthesis of Dinitrogen Complexes	113
4.8.2.14.1.	From Gaseous N ₂ .	
4.8.2.14.2.	From Hydrazine and Coordinated	
	Hydrazines.	116
4.8.2.14.3.	Via Miscellaneous Preparations.	117
4.8.2.15.	Synthesis of Nitrosyl Complexes	118
4.8.2.15.1.	From Nitric Oxide.	118
4.8.2.15.2.	From Nitrosonium Salts.	120
4.8.2.15.3.	From Nitrosyl Halides.	120
4.8.2.15.4.	From N-Nitrosamides.	121
4.8.2.15.5.	By Transfer of Coordinated NO.	121
4.8.2.15.6.	From Hydroxylamines.	121
4.8.2.15.7.	From Nitrites.	122
4.8.2.16.	Complexes Derived from Oximes and	
	Hydroxylamines	123
4.8.2.17.	Synthesis of Coordinated Azides	124
4.8.2.18.	From Corrins, Porphyrins and Other Nitrogen-	
	Containing Macrocyclic Ligands	125
4.8.2.18.1.	By Ligand Substitution Reactions.	125
4.8.2.18.2.	By Template Reactions.	128
4.8.2.19.	By Reacting N ₂ O and N ₂ O ₄ with Transition-	
	and Inner-Transition-Metal Compounds	129
4.8.2.20.	From Inorganic Nitrogen-Containing Anions	
	$(N_3^-, [NCO]^-, [NCS]^-, [NCSe]^-, [NO_2]^-,$	
	[CN] ⁻ , etc.)	131
4.8.2.20.1.	In Homogeneous Monodentatedly Ligated	
	Mononuclear Complexes.	131
4.8.2.20.2.	In Bridged Polynuclear Complexes.	132
4.8.2.20.3.	In Mixed Ligand Complexes.	134
4.8.2.21.	From Organic Nitrogen Anions or Their	
	Metallo Derivatives by Metathesis with	
	Transition-Metal Ligands	136
4.8.2.22.	From Metal Atom and Related Reactions	141
4.8.3.	Formation of the Phosphorus—Transition- and	
	Inner-Transition-Metal Bond	144
4.8.3.1.	From Elemental Phosphorus with Transition-	
	and Inner-Transition Metals and Their	
	Complexes	144
4.8.3.1.1.	The Phosphides of the Group IV-VIII	
	Transition Metals.	144
4.8.3.1.2.	The Phosphides of the Rare Earth and	
	Actinide Metals.	146
4.8.3.1.3.	From Other Reactions.	151
4832	From Hydrido Derivatives of Phosphorus	153

By Ligand Substitution Reactions with	
	153
Phosphorus—Hydrogen Bond.	156
From Halo-Derivatives of Phosphorus	160
By Ligand Substitution Reactions of	
Transition- and Inner-Transition-Metal	
Complexes.	160
By Cleavage of the Phosphorus—Halide	
Bond.	161
From Metal Atom and Relation Reactions.	162
From Triorganophosphines	164
By Reaction with Transition- and Inner-	
Transition-Metal Halides.	164
By Reaction with Transition- and Inner-	
Transition-Metal Aquo Complexes.	166
By Reaction with Transition- or Inner-	
Transition-Metal Carbonyl,	
Organometallic and Cluster Compounds.	167
Transition- and Inner-Transition-Metal	
Complexes.	168
From Metal-Atom and Related Reactions.	169
From Alkoxy and Amino Phosphorus	
	171
•	
	171
	172
·	173
•	
	173
	175
	176
•	176
•	., 5
Phosphametallocenes	178
	Transition- and Inner-Transition-Metal Complexes. By Cleavage of the Phosphorus—Hydrogen Bond. From Halo-Derivatives of Phosphorus By Ligand Substitution Reactions of Transition- and Inner-Transition-Metal Complexes. By Cleavage of the Phosphorus—Halide Bond. From Metal Atom and Relation Reactions. From Triorganophosphines By Reaction with Transition- and Inner-Transition-Metal Halides. By Reaction with Transition- and Inner-Transition-Metal Aquo Complexes. By Reaction with Transition- or Inner-Transition-Metal Carbonyl, Organometallic and Cluster Compounds. By Ligand Substitution Reactions with Transition- and Inner-Transition-Metal Complexes. From Metal-Atom and Related Reactions. From Alkoxy and Amino Phosphorus Compounds By Reaction with Transition- and Inner-Transition-Metal Halides and Aquo Complexes. By Reaction with Transition- or Inner-Transition-Metal Complexes. From Bidentate and Polydentate Phosphorus Ligands By Reactions with Transition- and Inner-Transition-Metal Carbonyl and Organometallic Complexes. By Reactions with Transition- and Inner-Transition-Metal Carbonyl and Organometallic Complexes. By Reactions with Transition- and Inner-Transition Halides. From Phospholes by Reactions with Transition- and Inner-Transition Complexes From Neutral Phospholes. From Phosphole lons and

4.8.3.8.	From Organophosphorus Anions and Metallophosphorus Compounds	179
4.8.4.	Formation of the Arsenic—, Antimony—, and	179
4.0.4.	Bismuth—Transition- and Inner-Transition-Metal	
		100
4044	Bonds	180
4.8.4.1.	From the Elements	180
4.8.4.2.	From Hydrido Derivatives of As, Sb, Bi	181
4.8.4.3.	From Halo Derivatives of As, Sb, Bi	182
4.8.4.3.1.	By Ligand Substitution and Ligand	
	Halogenation.	182
4.8.4.3.2.	By Cleavage of the Group VB—Halogen	
	Bond.	183
4.8.4.4.	From Trialkyl—and Triaryl—Arsines, Stibines	
	and Bismuthines	184
4.8.4.4.1.	By Reaction with Transition- and Inner-	
	Transition-Metal Halides.	184
4.8.4.4.2.	By Reaction with Transition- and Inner-	
	Transition-Metal Aquo Complexes.	185
4.8.4.4.3.	By Reaction with Organometallic and	
	Cluster Compounds.	185
4.8.4.4.4.	From Metal Atom and Related	
	Reactions.	186
4.8.4.5.	From Other Organo Derivatives of As,	
	Sb, Bi and Their Reactions with	
	Transition- and Inner-Transition-Metal	
	Complexes	187
4.8.4.6.	From Bi- and Polydentate As, Sb and Bi	
	Donors	189
4.8.4.6.1.	By Reaction with Transition- and Inner-	
	Transition-Metal Halides.	189
4.8.4.6.2.	By Reaction with Transition- and Inner-	
	Transition-Metal Aquo Complexes.	190
4.8.4.6.3.	By Reaction with Organometallic and	
	Cluster Compounds.	190
4.8.4.6.4.	By Other Ligand Substitution Reactions.	192
4.8.4.7.	From Other Organo-Group-VB and Metallo-	
1.0. 1.7 .	Group-VP Compounds	192
4.8.4.7.1.	By Reaction with Transition- and Inner-	
4.0.4.7.11	Transition-Metal Halides and Their	
	Complexes.	192
4.8.4.7.2.	By Reaction with Transition- and Inner-	132
¬.∪.¬.≀.∠.	Transition-Metal Organometallic	
	Complexes.	192
	Complexes.	152

4.9.	Formation of the Group-VB—Group-0 Element Bond	194
4.9.1.	Introduction	194
4.9.2.	Substitution Reactions	194
4.9.3.	Van der Waals Complexes	196
4.10.	Formation of Group-VB (N, P, As, Sb, Bi)– Group-IIIB (B, AI, Ga, In, TI) Compounds and Alloys	197
4.10.1.	Introduction	197
4.10.2.	Direct Synthesis of Bulk Group-IIIB-Group-VB	
	Compounds	197
4.10.2.1.	General Reaction Techniques	197
4.10.2.1.1.	Introduction.	197
4.10.2.1.2.	Liquid-Vapor Reactions.	197
4.10.2.1.3.	Liquid-Liquid Reactions.	200
4.10.2.2.	Nitrides	201
4.10.2.2.1.	Boron Nitride.	201
4.10.2.2.2.	Aluminum Nitride.	201
4.10.2.2.3.	Gallium Nitride.	202
4.10.2.3.	Phosphides	202
4.10.2.3.1.	Boron Phosphide.	202
4.10.2.3.2.	Aluminum Phosphide.	202
4.10.2.3.3.	Gallium Phosphide.	203
4.10.2.3.4.	Indium Phosphide.	205
4.10.2.4.	Arsenides	206
4.10.2.4.1.	Aluminum Arsenide.	206
4.10.2.4.2.	Gallium Arsenide.	207
4.10.2.4.3.	Indium Arsenide.	209
4.10.2.5.	Antimonides	209
4.10.3.	Epitaxial Synthesis	210
4.10.3.1.	Liquid-Phase Epitaxy	211
4.10.3.2.	Vapor-Phase Epitaxy	214
4.10.3.2.1.	Chemical Vapor Deposition by the Arsine System.	214
4.10.3.2.2.	Arsenic Trichloride Deposition.	216
4.10.3.3.	Metal Organic Chemical Vapor Deposition	218
4.10.3.4.	Molecular Beam Epitaxy	220
4.10.3.5.	Ion Implantation	222
4.10.3.6.	Ion Cluster Beam	223

List of Abbreviations	227
Author Index	235
Compound Index	279
Subject Index	477