CHEMICAL KINETICS

EDITED BY

C.H. BAMFORD

M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C., F.R.S. Formerly Campbell-Brown Professor of Industrial Chemistry, University of Liverpool

The late C.F.H. TIPPER

Ph.D. (Bristol), D.Sc. (Edinburgh) Senior Lecturer in Physical Chemistry, University of Liverpool

AND

R.G. COMPTON

M.A., D.Phil. (Oxon.) Lecturer in Physical Chemistry, University of Liverpool

VOLUME 21 REACTIONS OF SOLIDS WITH GASES

ELSEVIER AMSTERDAM-OXFORD-NEW YORK--TOKYO 1984

Contents

Prefac	е		ix
Chapt	er 1 (A.T. Fromhold, Jr. and R.G. Fromhold)	
An ov	erviev	v of metal oxidation theory	1
1.	An in	troduction to the fundamental concepts	1
	1.1	Stages of oxide formation	1
	1.2	Interfacial reactions and concentration differences.	5
	1.3	Role of electrons and electron holes	8
	1.4	Charge conservation	10
	1.5	Electric forces.	15
	1.6	Electric fields	17
	1.7	Electrical energy	18
	1.8	Planar charge distributions	19
	1.9	Electrostatic potentials and voltages	22
	1.10	Concentration and electrochemical potential gradients as driving	
		forces for particle currents and oxide growth	28
	1.11	Microscopic hopping transport.	36
	1.12	Effects of space charge on the currents	53
	1.13	Growth by uncharged particle transport.	64
	1.14	Single current theories	66
		1.14.1 Cabrera–Mott approach to thermal oxidation	66
		1.14.2 Anodic oxidation under constant voltage conditions	68
		1.14.3 Anodic oxidation under constant current conditions	69
	1.15	Coupled-currents approach to thermal oxidation	69
	1.16	The thick-film parabolic growth law	72
2.	Multi	layer oxides	79
	2.1	Background	79
	2.2	The case of oxide growth by diffusion of cation interstitials and	
		electrons	82
	2.3	The case of oxide growth by diffusion of cation vacancies and	
		electron holes	90
	2.4	The case of oxide growth by diffusion of anion interstitials and	
		electron holes	97
	2.5	The case of oxide growth by diffusion of anion vacancies and	
		electrons	103
	2.6	Comparison of the sets of final equations deduced above for the	
		four cases	111
	2.7	General matrix form for the growth equations valid for any specific	
		mobile defect species	114
			115
Ackno	owled	gements	115
Refere	ences		116

Chapter 2 (Y. Koga and L.G. Harrison)

Reactio	ns of solids with gases other than oxygen	119
1. Ir	ntroduction	119
2. G	aseous reduction of solids	120
2.	.1 Kinetics	120
2.	.2 Structural change on reduction. Ordering of defects	131
3. E	ffects of hydrogen on metals	133
3.	.1 Solution of hydrogen in metals	133
3.	.2 Hydrogen embrittlement of metals	135
4. R	eactions of solids with halogens	137
4.	.1 Isotopic exchange reactions	137
4.	.2 Chemical reactions. Electron transfer and electronic defects	139
5. D	pirect determination of the activities of reacting species at the inter-	
	ace	140
6. R	eaction of atmospheric pollutants with calcite and marble	144
	ices	146
Chapter	r 3 (D. Brennan)	
Heterog	geneous atomisation and recombination	151
1. In	ntroduction	151
2. G	eneral theory of atomisation and recombination	152
2.	.1 Desorption mechanisms	152
	2.1.1 A model for the adsorbed state	152
	2.1.2 Desorption of atoms	154
	2.1.3 Frequency of collision between adatoms	154
	2.1.4 Desorption of molecules	159
	2.1.5 Conditions for a negligible rate of molecular desorption	
	relative to the rate of atomic desorption	160
2		161

		2.1.4 Desorption of molecules	198
		2.1.5 Conditions for a negligible rate of molecular desorption	
		relative to the rate of atomic desorption	160
	2.2	Atomisation kinetics	161
		2.2.1 Significant processes at the surface	161
		2.2.2 Application of the principle of microscopic reversibility	163
		2.2.3 Kinetics of atomisation under stationary conditions when	
		molecular adsorption is unactivated	164
		2.2.4 Atomisation kinetics when molecular adsorption is activated	169
	2.3	Recombination reactions	170
		2.3.1 Mechanisms of recombination	170
		2.3.2 Recombination in the absence of atomic desorption	173
		2.3.3 Recombination in the presence of atomic desorption	178
3.	Expe	rimental methods and results. Atomisation	180
	3.1	Energy loss method	180
	3.2	Methods based on the trapping of atoms	181
		3.2.1 Experiments with static systems	182
		3.2.2 Flow system experiments	190
		3.2.3 The absence of trapping of thermally excited molecules	194
	3.3	Mass spectrometric methods	196
4.	Experimental methods and results. Recombination		
	4.1	Experimental methods	200
		4.1.1 Side arm method. Steady state static system	200
		4.1.2 Steady state flow systems	205
		4.1.3 Non-steady state methods	207
		4.1.4 Effusion method	209
	4.2	Selected results	210

4.2.1 The diffusion coefficient.	
4.2.2 Energy accommodation during heterogeneous recombination.	211
4.2.3 Recombination of H atoms on glass and silica	219
4.2.4 Recombination of H atoms on metals	224
4.2.5 Recombination of O atoms on metals and oxides	226
Symbols	227
References	231
Index	235