CHEMICAL KINETICS

EDITED BY

C.H. BAMFORD

M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C., F.R.S. Formerly Campbell-Brown Professor of Industrial Chemistry, University of Liverpool

The late C.F.H. TIPPER

Ph.D. (Bristol), D.Sc. (Edinburgh) Senior Lecturer in Physical Chemistry, University of Liverpool

AND

R.G. COMPTON

M.A., D.Phil. (Oxon.) Lecturer in Physical Chemistry, University of Liverpool

VOLUME 25

DIFFUSION-LIMITED REACTIONS

by

STEPHEN A. RICE

B.Sc. (London), D.Phil. (Oxon.), A.R.C.S., M.R.S.C.

ELSEVIER AMSTERDAM-OXFORD-NEW YORK-TOKYO 1985

Contents

Preface	
Chapter 1	
Introduction	1
Chapter 2	
Diffusion-controlled reactions in solution	
1. Introduction	
2. Evidence that some reactions are diffusion-controlled	
2.1 Fluorescence and phosphorescence quenching	
2.2 Fluorescence and phosphorescence quenching due to energy tran	s-
fer	5
2.3 Quenching of luminescence from metal complexes by electron tran	s-
fer	
2.4 Reactions of the solvated electron	5
2.5 Proton transfer reactions	6
2.6 Radical recombination reactions	6
2.7 Other systems	7
3. The Smoluchowski theory	
3.1 A phenomenological approach	
3.2 The mutual distribution of reactants	9
3.3 The initial distribution	
3.4 Boundary conditions	
3.5 The diffusion equation	
3.6 Solution for the density distribution	
3.7 The Smoluchowski rate coefficient	
3.8 Other initial distributions and the Green's function	
4. The incorporation of chemical reaction rates into the diffusion model	
4.1 The relative magnitude of chemical and diffusion reaction rates	
4.2 The partially reflecting boundary condition	
4.3 Solution for the density distribution	
4.4 The rate coefficient for a partially reflecting boundary condition .	
5. A comparison of experimental results with the Smoluchowski theory	
5.1 Which experimental results are of prime concern?	
5.2 Radical reactions	
5.3 Reactions of the solvated electron	
5.4 Fluorescence quenching	
5.5 Stern–Volmer quenching	
5.6 Reaction of carbon monoxide with microperoxidase	38
6. Complications to the simple diffusion model	
6.1 Introduction	•••
6.2 Direct intermolecular forces	40

6.3	3 Long-range transfer	40
6.4		41
6.8		41
6.0		42
6.7		43
6.8		44
6.9		45
0.3	a The diffusion coefficient and the Stokes-Einstein relationship	40
Chapter	3	
-		
	ns between ions in solution	47
	eoretical considerations for ionic reactions in solutions	47
1.		47
1.5		48
1.		49
1.4	4 The time-dependent rate coefficient	51
1.		53
1.0		57
1.'	7 Concentrated electrolyte solutions	59
2. Ex	perimental studies of ionic reactions in solution	61
2.	1 Reactions of the hydrated electron with dilute electrolytes	61
2.2		63
2.3	3 Quenching of the fluorescence from metal ligand complexes	66
2.4		67
2.5	5 Conclusions	69
Chapter	4	
I ong ray	nge transfer effects and diffusion-controlled reactions	71
	eneral theoretical considerations	71
1. 0.		71
1.		72
1.		73
		74
1.		
1.		76
	e dipole-dipole interaction	77
2.		77
2.		79
2.3	1	79
2.4	1 1 00	82
2.	▲····································	85
2.	1 1 1 55	89
	e exchange effect	90
3.		90
3.		91
3.	3 Time-dependent rate coefficient	93
3.		94
3.	5 Experimental studies	95
4. El	ectron tunnelling	98
4.		98
4.	2 The steady-state rate coefficient	100
4.	3 The time-dependent rate coefficient	101
4.	· · · · · · · · · · · · · · · · · · ·	101
4.	I	101
5. C	onclusions	103

Chapter 5

Rota	ational	diffusion effects
1	. Intro	duction
	1.1	Chemical reaction and rotational diffusion rates
	1.2	Molecular reactants which are anisotropically reactive
2	. Theo	retical aspects of rotational relaxation
	2.1	Hydrodynamic theories
	2.2	Extended diffusion models 107
	2.3	Microscopic boundary layer effects 107
3	. Expe	rimental studies of rotational relaxation
	3.1	Light scattering
	3.2	Fluorescence depolarisation
4	. Simu	ltaneous rotational and translational diffusion
	4.1	Theoretical analyses
	4.2	Are rotational relaxation effects important in chemical reactions? 114
	4.3	Reaction between ions and dipoles 114
	4.4	Recombination of carbon monoxide and microperoxidase

Chapter 6

The e	scape probability of an isolated pair	119
1. Introduction		
2.	Geminate radical recombination. Theory	119
	2.1 Introduction	119
	2.2 From the diffusion equation to escape and survival probabilities	121
	2.3 The cage effect	125
	2.4 Other analyses of geminate radical recombination	132
3.	Experimental studies of radical and molecular recombination	135
	3.1 Introduction	135
	3.2 Steady-state studies of the recombination probability	137
	3.3 Iodine atom recombination	140
	3.4 Other studies of the time-dependent recombination probability	146
4.	The effect of a magnetic field on radical pair recombination	147
	4.1 Introduction	147
	4.2 Chemically induced magnetic polarisation	148

Chapter 7

Geminate ion-pair recombination 1	51
1. Introduction	51
2. Theory of recombination of ion-pairs	53
2.1 Recombination and escape probabilities	53
2.1.1 Ultimate recombination probability in the absence of an	
applied electric field	55
2.1.2 Ultimate recombination probability of an ion-pair in an	
applied electric field	57
2.1.3 Survival probability of an ion-pair in an applied electric field 1	58
2.2 Complications to the analysis of the recombination probability 1	5 9
2.3 The survival probability and the density distribution	65
2.4 Scavenging of one or other moiety of an ion-pair 1'	70
2.5 Scavenging (at high concentrations) of one or other moiety of an	
ion-pair	74
3. Experimental studies of geminate ion-pair recombination	

	3.1	Introduction	176
	3.2	Recombination probability from ion yields	177
	3.3	Scavenging studies on ion-pairs	184
	3.4	Time-dependent studies of geminate recombination	188
	3.5	The effect of a magnetic field on geminate ion-pair recombination	194
4.	Spurs	produced by high-energy radiation	196
	4.1	Introduction	196
	4.2	Evidence for the formation of ion clusters (spurs)	197
	4.3	The structure of tracks	203
	4.4	Diffusion kinetic analysis of spur-decay processes	206

Chapter 8

A cri	tique o	of the diffusion equation and molecular pair treatments
1.	Intro	duction
2.	Diffu	sion equation analysis
	2.1	The validity of the diffusion equation
	2.2	The initial condition
	2.3	The outer boundary condition 224
	2.4	The inner boundary condition
	2.5	Hydrodynamic effects
	2.6	The potential of mean force 235
	2.7	Intermolecular forces between reactants
3.	Mole	cular pair analysis
	3.1	Behaviour of molecular pairs in homogeneous reaction 242
	3.2	Diffusion or random walk approximations for $h(t) \dots \dots$
	3.3	Other analyses of reaction rates, $h(t) \dots \dots$
	3.4	First passage time analyses
4.	Conc	lusions, for future work 250
	4.1	On experimental studies
	4.2	On theoretical studies

Chapter 9

Refin	emen	ts to the diffusion equation analysis to include many-body effects	255
1.	Intro	duction	255
2.	The o	liffusion of an isolated pair	257
	2.1	The diffusion equation	257
	2.2	The solution of the diffusion equations	259
3.	Hydr	odynamic repulsion and the diffusion equation	261
	3.1	Hydrodynamic repulsion	261
	3.2	Incorporation of the hydrodynamic repulsion into the diffusion	
		equation	262
	3.3	Reduction to an isolated pair equation	265
	3.4	The rate coefficient including hydrodynamic repulsion	267
	3.5	Other analyses of hydrodynamic repulsion	269
4.	The V	Wilemski and Fixman theory of fluorescence quenching	271
	4.1	The model	271
	4.2	The macroscopic rate equation	273
	4.3	Comments	276
5.	Com	petitive effects in reactions	278
	5.1	Early work	278
	5.2	The local density	
	5.3	The "strength of reaction"	282

	5.4	The rate coefficient	285
	5.5	Comments	286
6.	The o	density and survival probability of radicals and ions in clusters	289
	6.1	A single diffusing species near two spherical sinks	289
	6.2	A single anion diffusing near several stationary cations	291
	6.3	The derivation of the stochastic equation for a cluster	292
	6.4	Escape of particles from a local cluster	295

Chapter 10

The v	ariational principle	99
		99
		00
		00
		01
	1	02
		04
3.		05
	11	05
	3.2 A lower bound on the rate coefficient	08
4.	Diffusion on a cubic lattice of sinks	09
5.	Further estimates of the rate coefficient	11
	5.1 Development of the rate coefficient	11
	5.2 Expansion of the Green's function in eigen-functions 3	13
	5.3 A variation principle	14
	5.4 The lower bound on the rate coefficient	15
	5.5 Two examples of this variational approach 3	16
6.	Conclusions	18

Chapter 11

Phenomenological Brownian motion	319
1. Introduction	319
2. The velocity autocorrelation function	. 321
2.1 Theoretical considerations	321
2.2 Observation and simulations	. 322
3. From the Langevin equation to the diffusion equation	326
3.1 The Langevin description of Brownian motion	. 326
3.2 The Fokker–Planck equation	. 328
3.3 The telegrapher's equation	. 329
3.4 The Burnett equation	. 331
4. The generalised Langevin equation and chemical reactions	. 332
4.1 The generalised Langevin equation	. 332
4.2 The generalised Langevin equation and reactions in solution	. 334
5. Computer simulations	. 336

Chapter 12

k

The kinetic theory applied to chemical reactions in solutions	339
1. Introduction	339
2. The kinetic theory of fluids	340
2.1 The Liouville equation	340
2.2 The pseudo-Liouville equation for hard spheres	341

3.	3. The rate of a chemical reaction from the kinetic theory of fluids		
	3.1	Inclusion of a chemical reaction into kinetic theory	344
	3.2	The cluster expansion and super-position approximation	347
	3.3	An approximate equation for the singlet density	348
	3.4	The macroscopic rate kernel.	350
	3.5	Approximate forms of the macroscopic rate coefficient.	351
4.	Exter	nsions to the kinetic theory	353
	4.1	Reversible reactions and the competitive effect	353
	4.2	Recombination probability of radicals	356

Appendix A

Second-order partial differential equations and Green's functions	361
1. Dirac delta functions	361
2. Inhomogeneous second-order (partial) differential equations	361
3. The Green's theorem and function	363
4. The Green's function for the Debye–Smoluchowski equation	364
5. Green's theorem and the variation of parameters	368
6. Causality	370
7. Reciprocity	370

Appendix B

The relationship between the lifetime distribution and the diffusion equation 1. The lifetime distribution 2. The average scavenging probability 3. Averaging over the initial distribution 4. Towards the diffusion equation analysis	373 373 374				
Appendix C					
The molecular pair approach	377				
Appendix D					
The general equation of reaction kinetics	381				
Acknowledgements	386				
References	387				
Index	401				