Contents

1	Introduction to Complex Systems	1
	1.1 Physics, biology, or social science?	1
	1.2 Components from physics	1
	1.2.1 The nature of the fundamental forces	2
	1.2.2 What does predictive mean?	3
	1.2.3 Statistical mechanics-predictability on stochastic grounds	5
	1.2.4 The evolution of the concept of predictability in physics	5
	1.2.5 Physics is analytic, complex systems are algorithmic	6
	1.2.6 What are complex systems from a physics point of view?	7
	1.2.7 A note on chemistry-the science of equilibria	9
	1.3 Components from the life sciences	10
	1.3.1 Chemistry of small systems	10
	1.3.2 Biological interactions happen on	
	networks—almost exclusively	12
	1.3.3 What is evolution?	13
	1.3.4 Adaptive and robust—the concept of the edge of chaos	16
	1.3.5 Components taken from the life sciences	19
	1.4 Components from the social sciences	19
	1.4.1 Social systems are continuously restructuring networks	20
	1.5 What are Complex Systems?	21
	1.5.1 What is co-evolution?	24
	1.5.2 The role of the computer	25
	1.6 The structure of the book	26
	1.6.1 What has complexity science contributed to the history of science?	27
2	Probability and Random Processes	29
	2.1 Overview	29
	2.1.1 Basic concepts and notions	31
	2.1.2 Probability and information	36
	2.2 Probability	39
	2.2.1 Basic probability measures and the Kolmogorov axioms	39
	2.2.2 Histograms and relative frequencies	41
	2.2.3 Mean, variance, and higher moments	41
	2.2.4 More than one random variable	44
	2.2.5 A note on Bayesian reasoning	47
	2.2.6 Bayesian and frequentist thinking	52

	2.3 The law of large numbers—adding random numbers	53	
	2.3.1 The central limit theorem	55	
	2.3.2 Generalized limit theorems and α -stable processes	60	
	2.4 Fat-tailed distribution functions	65	
	2.4.1 Distribution functions that show power law tails	66	
	2.4.2 Other distribution functions	69	
	2.5 Stochastic processes	75	
	2.5.1 Simple stochastic processes	76	
	2.5.2 History- or path-dependent processes	84	
	2.5.3 Reinforcement processes	85	
	2.5.4 Driven dissipative systems	86	
	2.6 Summary	89	
	2.7 Problems	9 0	
3	Scaling		
	3.1 Overview	93	
	3.1.1 Definition of scaling	95	
	3.2 Examples of scaling laws in statistical systems	96	
	3.2.1 A note on notation for distribution functions	98	
	3.3 Origins of scaling	100	
	3.3.1 Criticality	101	
	3.3.2 Self-organized criticality	105	
	3.3.3 Multiplicative processes	106	
	3.3.4 Preferential processes	108	
	3.3.5 Sample space reducing processes	110	
	3.3.6 Other mechanisms	119	
	3.4 Power laws and how to measure them	120	
	3.4.1 Maximum likelihood estimator for power law exponents $\lambda < -1$	120	
	3.4.2 Maximum likelihood estimator for power laws for all exponents	123	
	3.5 Scaling in space—symmetry of non-symmetric objects, fractals	124	
	3.5.1 Self similarity and scale invariance	125	
	3.5.2 Scaling in space: fractals	125	
	3.5.3 Scaling in time—fractal time series	129	
	3.6 Example—understanding allometric scaling in biology	132	
	3.6.1 Understanding the 3/4 power law	132	
	3.7 Summary	137	
	3.8 Problems	139	
4	Networks	140	
	4.1 Overview	140	
	4.1.1 Historical origin of network science	142	
	4.1.2 From random matrix theory to random networks	142	
	4.1.3 Small worlds and power laws	143	
	4.1.4 Networks in the big data era	144	

4.2	Netwo	ork basics	144
	4.2.1	Networks or graphs?	145
	4.2.2	Nodes and links	145
	4.2.3	Adjacency matrix of undirected networks	145
4.3	Measu	ires on networks	150
	4.3.1	Degree of a node	150
	4.3.2	Walking on networks	152
	4.3.3	Connectedness and components	153
	4.3.4	From distances on networks to centrality	154
	4.3.5	Clustering coefficient	156
4.4	Rando	om networks	158
	4.4.1	Three sources of randomness	159
	4.4.2	Erdős–Rényi networks	160
	4.4.3	Phase transitions in Erdős–Rényi networks	162
	4.4.4	Eigenvalue spectra of random networks	164
4.5	Beyon	d Erdős–Rényi–-complex networks	166
	4.5.1	The configuration model	167
	4.5.2	Network superposition model	169
	4.5.3	Small worlds	170
	4.5.4	Hubs and scale-free networks	172
4.6	Comm	nunities	177
	4.6.1	Graph partitioning and minimum cuts	178
	4.6.2	Hierarchical clustering	179
	4.6.3	Divisive clustering in the Girvan-Newman algorithm	180
	4.6.4	Modularity optimization	181
4.7	Functi	onal networks—correlation network analysis	183
	4.7.1	Construction of correlation networks	185
		Filtering the correlation network	189
4.8	Dynan	nics on and of networks-from diffusion to co-evolution	193
		Diffusion on networks	194
		Laplacian diffusion on networks	195
		Eigenvector centrality	198
		Katz prestige	199
		PageRank	199
		Contagion dynamics and epidemic spreading	200
	4.8.7	Co-evolving spreading models-adaptive networks	204
	4.8.8	Simple models for social dynamics	205
4.9		alized networks	207
	4.9.1	Hypergraphs	208
		Power graphs	209
		Multiplex networks	209
	4.9.4	Multilayer networks	210
4.10		ble-systemic risk in financial networks	211
		Quantification of systemic risk	213
	4.10.2	Management of systemic risk	217

		Summ Proble	-	219 221
5	Evolutionary Processes			224
	5.1	Overv	iew	224
		5.1.1	Science of evolution	225
		5.1.2	Evolution as an algorithmic three-step process	227
		5.1.3	What can be expected from a science of evolution?	230
	5.2	Evider	nce for complex dynamics in evolutionary processes	232
		5.2.1	Criticality, punctuated equilibria, and the abundance of	
			fat-tailed statistics	232
		5.2.2	Evidence for combinatorial co-evolution	234
	5.3	From	simple evolution models to a general evolution algorithm	236
		5.3.1	Traditional approaches to evolution—the replicator	
			equation	237
			Limits to the traditional approach	241
			Towards a general evolution algorithm	242
			General evolution algorithm	244
	5.4		is fitness?	246
			Fitness landscapes?	247
		5.4.2		247
		5.4.3		249
		5.4.4	U 1 11	261
		5.4.5		263
	5.5		evolution models	264
			Emergence of auto-catalytic sets—the Jain–Krishna model	265
		5.5.2		271 277
	5.6	5.5.3	Systemic risk in evolutionary systems—modelling collapse inear evolution models—combinatorial evolution	277
	5.0	Non-h		281
		5.6.2	1 0 0	282
		5.6.2	-	282
		5.6.4		200
		5.0.4	model—CCC model	288
		5.6.5		298
	57		ples—evolutionary models for economic predictions	299
	5.7		Estimation of fitness of countries from economic data	300
		5.7.2	Predicting product diversity from data	304
	5.8	Summ		308
		Proble	•	311
6			Mechanics and Information Theory for Complex Systems	313
5		Overv	• - •	313
	0.1		The three faces of entropy	313
		0.1.1	The uncertaces of entropy	514

6.2 Classical notions of entropy for simple systems	318
6.2.1 Entropy and physics	321
6.2.2 Entropy and information	328
6.2.3 Entropy and statistical inference	343
6.2.4 Limits of the classical entropy concept	348
6.3 Entropy for complex systems	349
6.3.1 Complex systems violate ergodicity	350
6.3.2 Shannon–Khinchin axioms for complex systems	352
6.3.3 Entropy for complex systems	352
6.3.4 Special cases	356
6.3.5 Classification of complex systems based on their of	
6.3.6 Distribution functions from the complex systems	
6.3.7 Consequences for entropy when giving up ergodi	
6.3.8 Systems that violate more than the composition a	
6.4 Entropy and phasespace for physical complex systems	365 365
6.4.1 Requirement of extensivity	366
6.4.2 Phasespace volume and entropy	366
6.4.3 Some examples	369
6.4.4 What does non-exponential phasespace growth ir	
6.5 Maximum entropy principle for complex systems	374
6.5.1 Path-dependent processes and multivariate distrik	
6.5.2 When does a maximum entropy principle exist fo	
path-dependent processes?	375
6.5.3 Example—maximum entropy principle for path-o	
random walks	380
6.6 The three faces of entropy revisited	382
6.6.1 The three entropies of the Pólya urn process	383
6.6.2 The three entropies of sample space reducing pro	cesses 388
6.7 Summary	394
6.8 Problems	395
	200
The Future of the Science of Complex Systems?	398
Special Functions and Approximations	400
8.1 Special functions	400
8.1.1 Heaviside step function	400
8.1.2 Dirac delta function	400
8.1.3 Kronecker delta	401
8.1.4 The Lambert-W function	401
8.1.5 Gamma function	402
8.1.6 Incomplete Gamma function	403
8.1.7 Deformed factorial	403
8.1.8 Deformed multinomial	403
8.1.9 Generalized logarithm	403
· · · · · · · · · · · · · · · · · · ·	

7

8

8.1.10 Pearson correlation coefficient	404
8.1.11 Chi-squared distribution	404
8.2 Approximations	405
8.2.1 Stirling's formula	405
8.2.2 Expressing the exponential function as a power	405
8.3 Problems	406 407
References	
Index	425